Credit: Dominic Ford

Look up! One of those stars just helped tell us when our galaxy ate another one

Embargoed until: Publicly released:

A star visible with the naked eye from Australia has revealed the likely date that the Milky Way ingested a smaller galaxy, putting it between 11.6 and 13.2 billion years ago. Over its history, the Milky Way has ingested many smaller galaxies, but its has proved difficult to find the precise time at which any one merger occurred. The researchers, including Australians, looked at a star visible all night from Australia called v Indi, and found it bears the hallmarks of having been heated by the collision, suggesting it must already have been in place before the merger. They could then work out the star was around 11 billion years old, and by using this date and allowing time for the merger to spread through the galaxy, they worked out that the earliest it could have begun was 11.6 and 13.2 billion years ago.

Journal/conference: Nature Astronomy

DOI: 10.1038/s41550-019-0975-9

Organisation/s: The University of Sydney, The University of New South Wales, The Australian National University, University of Birmingham, UK

Funder: Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. W.J.C. acknowledges support from the UK Science and Technology Facilities Council (STFC) and UK Space Agency. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant agreement number DNRF106). This research was partially conducted during the Exostar19 programme at the Kavli Institute for Theoretical Physics at UC Santa Barbara, which was supported in part by the National Science Foundation under grant number NSF PHY-1748958. A.M., J.T.M., F.V. and J.M. acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement number 772293). F.V. acknowledges the support of a Fellowship from the Center for Cosmology and AstroParticle Physics at The Ohio State University. W.H.B. and M.B.N. acknowledge support from the UK Space Agency. K.J.B. is supported by the National Science Foundation under award AST-1903828. M.B.N. acknowledges partial support from the NYU Abu Dhabi Center for Space Science under grant number G1502. A.M.S. is partially supported by the Spanish Government (ESP2017-82674-R) and Generalitat de Catalunya (2017-SGR-1131). T.M. acknowledges financial support from Belspo for contract PRODEX PLATO. H.K. acknowledges support from the European Social Fund via the Lithuanian Science Council grant number 09.3.3-LMT-K-712- 01-0103. S.B. acknowledges support from NSF grant AST-1514676 and NASA grant 80NSSC19K0374. V.S.A. acknowledges support from the Independent Research Fund Denmark (research grant 7027-00096B). D.H. acknowledges support by the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379) awarded through the TESS Guest Investigator Program and by the National Science Foundation (AST-1717000). T.S.M. acknowledges support from a visiting fellowship at the Max Planck Institute for Solar System Research. Computational resources were provided through XSEDE allocation TG-AST090107. D.L.B. acknowledges support from NASA under grant NNX16AB76G. T.L.C. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 792848 (PULSATION). This work was supported by FCT/ MCTES through national funds (PIDDAC) by means of grant UID/FIS/04434/2019. K.J.B., S.H., J.S.K. and N.T. are supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 338251 (StellarAges). E.C. is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 664931. L.G.-C. acknowledges support from the MINECO FPI-SO doctoral research project SEV-2015-0548-17-2 and predoctoral contract BES- 2017-082610. P.G. is supported by the German space agency (Deutsches Zentrum für Luft- und Raumfahrt) under PLATO data grant 50OO1501. R.K. acknowledges support from the UK Science and Technology Facilities Council (STFC), under consolidated grant ST/L000733/1. M.S.L. is supported by the Carlsberg Foundation (grant agreement number CF17-076). Z.C.O., S.O. and M.Y. acknowledge support from the Scientific and Technological Research Council of Turkey (TÜBİTAK:118F352). S.M. acknowledges support from the Spanish ministry through the Ramon y Cajal fellowship number RYC-2015-17697. T.S.R. acknowledges financial support from Premiale 2015 MITiC (PI B. Garilli). R.Sz. acknowledges the support from NKFIH grant project No. K-115709, and the Lendület program of the Hungarian Academy of Science (project number 2018- 7/2019). J.T. acknowledges support was provided by NASA through the NASA Hubble Fellowship grant number 51424 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This work was supported by FEDER through COMPETE2020 (POCI-01-0145-FEDER-030389. A.M.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 749962 (project THOT). A.M. and P.R. acknowledge the support of the Government of India, Department of Atomic Energy, under Project No. 12-R&D-TFR-6.04-0600. K.J.B. is an NSF Astronomy and Astrophysics Postdoctoral Fellow and DIRAC Fellow.


  • Springer Nature
    Web page
    Please link to the article in online versions of your report (the URL will go live after the embargo ends).

News for:


Media contact details for this story are only visible to registered journalists.