Nyiragongo_volcano_(30742646814) By Nina R from Africa - Nyiragongo volcano, CC BY 2.0
Nyiragongo_volcano_(30742646814) By Nina R from Africa - Nyiragongo volcano, CC BY 2.0

How a volcano erupted without warning

Embargoed until: Publicly released:
Peer-reviewed: This work was reviewed and scrutinised by relevant independent experts.

The 2021 eruption of Mount Nyiragongo in the Democratic Republic of the Congo, which occurred with no meaningful warning, may have been triggered by a rupture in the volcano’s edifice (the conical structure), according to international scientists. They say their findings highlight the value of monitoring volcanoes, which may provide clues to how eruptions can be forecast in the absence of the usual precursory signals. Mount Nyiragongo's 2021 eruption lasted approximately six hours, and led to about 220 people reported missing or dead and 750 injured, as well as infrastructure damage. Typically, volcanic eruptions are triggered by the ascent of magma to the surface and pressure build-up, which produces detectable signals, but an edifice rupture would have meant magma was already close to the surface, leaving little time for signals to be picked up as the eruption occurred just 40 minutes later, the experts say.

Journal/conference: Nature

Link to research (DOI): 10.1038/s41586-022-05047-8

Organisation/s: European Center for Geodynamics and Seismology, Luxemburg

Funder: Sentinel-1 SAR images and Sentinel-5P TROPOMI data are provided by ESA. ALOS-2 SAR images are provided by JAXA under the terms and conditions of the Second Earth Observation Research Announcement (PI No. ER2A2N086). We acknowledge S. Sobue and Y. Aoki for assisting in the quick response of JAXA. CSK images were obtained from ASI through the GEO GSNL Supersite initiative. We thank M. Poland, S. Ebmeier and M. Bonano for having helped unlock the delivery of CSK images to the Virunga Supersite, and C. Tinel and C. Proy (French Centre National d’Etude Spatiales (CNES)) for facilitating coordination between the scientific response and space agencies participating in the United Nation (UN) ‘Space and Major Disasters’ International Charter. TerraSAR-X SAR images were obtained from DLR through the International Charter 'Space and Major Disasters' (© DLR e.V. 2021, Distribution Airbus DS Geo GmbH). Pléiades images were provided by the French CNES in the frame of DINAMIS project no. 2021 123 and ForM@Ter's CIEST2 activation. PlanetScope images were provided through the Planets Education and Research Standard plan (ID 81527/PI:R.G. and ID 581018/PI:BS). We thank S. Ebmeier for facilitating access to ICEYE satellite imagery. We thank the Capella company for rapid tasking. L. Clarisse and N. Clerbaux helped obtain SEVIRI data provided by EUMETSAT. GNSS and seismic data were provided by the KivuSnet and KivuGnet monitoring networks maintained by European Center for Geodynamics and Seismology/ Musée National d’Histoire Naturelle (MNHN Luxembourg), the Royal Museum for Central Africa, the Goma Volcano Observatory, the Centre de Recherche en Sciences Naturelles de Lwiro, the Université Officielle de Bukavu, the Rwanda Petroleum and Mining Board (RMB) and the University of Bujumbura (Burundi). The Congolese Institute for Nature Preservation, MONUSCO and GVO staff provide support to ensure the security of these stations. The permanent ground-based monitoring infrastructures and the contributions from B.S., C.M. and J.B. benefited from several past and ongoing research projects funded by the STEREOIII Programme of the Belgian Science Policy Office, the Fonds National de la Recherche of Luxembourg and the Belgian Directorate General for Development Cooperation and humanitarian aid, a.o. RESIST (SR/00/305 and INTER/STEREOIII/13/05), VeRSUS (SR/00/382) and HARISSA. RMB assisted the deployment of the temporary seismic stations. Airborne campaigns were made possible with the support of MONUSCO. J. L. Froger and Y. Fukushima provided the unwrapping algorithm used for S1 interferograms. Y. Morishita, P. Lundgren and F. Delgado helped improve the processing and ionospheric corrections of the ALOS-2 interferograms. Deformation modelling benefited from the infrastructure and assistance of the Mésocentre from the University of Clermont Auvergne, from funds from French Government Laboratory of Excellence initiative no. ANR-10-LABX-0006. This is Laboratory of Excellence ClerVolc contribution no. 548. This work is a contribution to the EUROVOLC project, under the EU Horizon 2020 and Innovation Action, grant no. 731070. S.P. was supported by a FRS-FNRS postdoctoral fellowship at Université libre de Bruxelles . C.W. acknowledges funding by the National Science Foundation (grant no. EAR 1923943).

Media release

From: Springer Nature

How a volcano erupts without warning

The 2021 eruption of Mount Nyiragongo in the Democratic Republic of the Congo, which occurred with no meaningful warning, may have been triggered by a rupture in the volcano’s edifice (the conical structure), a paper published in Nature suggests. The findings highlight the value of monitoring volcanoes, which may provide clues to how eruptions can be forecast in the absence of the usual precursory signals.  

Mount Nyiragongo is an open-vent volcano with a large lava lake housed in the summit crater. Its eruption in May 2021 lasted approximately six hours, producing lava flows that led to about 220 people reported missing or dead and 750 injured, as well as infrastructure damage. The eruption appeared to have occurred without any precursors that could have provided a warning. Typically, volcanic eruptions are triggered by the ascent of magma to the surface and pressure build-up, which produces signals that can be detected. Two historical eruptions of Mount Nyiragongo, in 1977 and 2002, did have precursors, with seismic activity and eruptive activity reported before the main eruptions. 

Delphine Smittarello and colleagues analysed the May 2021 eruption of Mount Nyiragongo and suggest that the eruption may have been triggered by an edifice rupture, which may have occurred because stress reached tensile strength (the maximum stress it could take before rupturing) or the structure weakened over time as a result of sustained stress and high temperatures. As the magma was already close to the surface and only had to travel a short distance before erupting, this left little time to detect the signals before the eruption 40 minutes later. 

The authors note that these findings raise questions about the mechanisms behind Mount Nyiragongo’s eruptions and the possibility of more hazardous events due to its proximity to populated areas. More generally, they argue it highlights the issues raised by open-vent volcanoes for monitoring, early detection and risk management.  

Attachments:

Note: Not all attachments are visible to the general public

  • Springer Nature
    Web page
    The URL will go live after the embargo ends

News for:

International

Media contact details for this story are only visible to registered journalists.