The Altar Stone at Stonehenge. Credit: English Heritage
The Altar Stone at Stonehenge. Credit: English Heritage

NEWS BRIEFING: Great Scot! Stonehenge’s Altar Stone origins reveal advanced ancient Britain

Embargoed until: Publicly released:
Peer-reviewed: This work was reviewed and scrutinised by relevant independent experts.

New research led by Curtin University has revealed Stonehenge’s monumental six-tonne Altar Stone, long believed to originate from Wales, actually hails from Scotland. Australian authors will join us for an online briefing to discuss this discovery, and what the Altar Stone's long journey can tell us about the society and technology of ancient Britain.

Journal/conference: Nature

Research: Paper

Organisation/s: Curtin University, The University of Adelaide

Funder: Funded by an Australian Research Council Discovery Project

Media release

From: Curtin University From: Australian Science Media Centre

MEDIA BRIEFING:

Speakers:

  • PhD student Anthony Clarke from the Timescales of Mineral Systems Group within Curtin University’s School of Earth and Planetary Sciences
  • Professor Chris Kirkland from the Timescales of Mineral Systems Group within Curtin University’s School of Earth and Planetary Sciences

Date: Mon 12 Aug 2024
Start Time: 14:00 AEST
Duration: Approx 45 min 
Venue: Online - Zoom

CURTIN UNIVERSITY MEDIA RELEASE

New research led by Curtin University has revealed Stonehenge’s monumental six-tonne Altar Stone, long believed to originate from Wales, actually hails from Scotland.

Furthermore, the findings point to the existence of unexpectedly advanced transport methods and societal organisation at the time of the stone’s arrival at its current location in southern England about 5000 years ago.

Curtin researchers studied the age and chemistry of mineral grains within fragments of the Altar Stone, which is a 50cm thick sandstone block measuring 5 x 1 metres, that sits at the centre of Stonehenge’s iconic stone circle in Wiltshire.

Lead author PhD student Anthony Clarke from the Timescales of Mineral Systems Group within Curtin’s School of Earth and Planetary Sciences said analysis of the age and chemical composition of minerals within fragments of the Altar Stone matched it with rocks from northeast Scotland, while also clearly differentiating them from Welsh bedrock.

“Our analysis found specific mineral grains in the Altar Stone are mostly between 1000 to 2000 million years old, while other minerals are around 450 million years old,” Mr Clarke said.

“This provides a distinct chemical fingerprint suggesting the stone came from rocks in the Orcadian Basin, Scotland, at least 750 kilometres away from Stonehenge.

“Given its Scottish origins, the findings raise fascinating questions, considering the technological constraints of the Neolithic era, as to how such a massive stone was transported over vast distances around 2600 BC.

“This discovery also holds personal significance for me. I grew up in the Mynydd Preseli, Wales, where some of Stonehenge’s stones came from. I first visited Stonehenge when I was one year old and now at 25, I returned from Australia to help make this scientific discovery – you could say I’ve come full circle at the stone circle.”

Study co-author Professor Chris Kirkland, also from the Timescales of Mineral Systems Group at Curtin, said the findings had significant implications for understanding ancient communities, their connections, and their transportation methods.

“Our discovery of the Altar Stone’s origins highlights a significant level of societal coordination during the Neolithic period and helps paint a fascinating picture of prehistoric Britain,” Professor Kirkland said.

“Transporting such massive cargo overland from Scotland to southern England would have been extremely challenging, indicating a likely marine shipping route along the coast of Britain.

“This implies long-distance trade networks and a higher level of societal organisation than is widely understood to have existed during the Neolithic period in Britain.”

Curtin Vice-Chancellor Professor Harlene Hayne said much of the research and analysis done by Mr Clarke and Professor Kirkland was undertaken at the University’s renowned John de Laeter Centre.

“This fascinating study is another example of the stellar work being undertaken by Curtin University’s Timescales of Mineral Systems Group with the John de Laeter Centre, using state-of-the-art equipment in our GeoHistory Facility that supports important minerals research,” Professor Hayne said.

“It offers specialist mass spectrometers which are used to examine the composition of materials such as rock-forming minerals, archaeological artefacts, meteorites, ceramics and even biological substances such as teeth, bones and shell.

“Ongoing investment is required to maintain cutting-edge facilities like this, which are crucial for attracting the world’s best minds. In this case, we are delighted that our outstanding research reputation and facilities led PhD student Anthony Clarke to travel 15,000 kilometres from his home in Wales to study at Curtin and make this significant finding.”

Mr Clarke said he chose Curtin for his PhD because it also offered the chance to work alongside renowned researchers, such as Professor Kirkland.

“Curtin has given us the freedom and independence to explore fascinating work, such as Stonehenge and access to the world’s most advanced equipment and expert staff means I can complete all my work there,” Mr Clarke said.

“Western Australia itself as home to the oldest minerals on Earth, is an outstanding natural laboratory. So I’m very grateful to have had the opportunity to do this research in this outstanding place.”

Funded by an Australian Research Council Discovery Project, the research was performed in collaboration with Aberystwyth University, The University of Adelaide and University College London.

The full study titled ‘A Scottish Provenance for the Altar Stone of Stonehenge’ will be published in the journal Nature. (http://doi.org/10.1038/S41586-024-07652-1)

Attachments:

Note: Not all attachments are visible to the general public

  • Springer Nature
    Web page
    The URL will go live after the embargo ends
  • Curtin University
    Web page
    Additional images and video from Curtin University
  • English Heritage
    Web page
    Images (only for use with this story with credit)
  • English Heritage
    Web page
    Videos (only for use with this story with credit)

News for:

Australia
International
SA
WA

Multimedia:

  • The Altar Stone, seen here underneath two bigger Sarsen stones.
    The Altar Stone, seen here underneath two bigger Sarsen stones.

    File size: 1.9 MB

    Attribution: Professor Nick Pearce, Aberystwyth University

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Anthony Clarke at Stonehenge as a one-year-old with his father in 1998
    Anthony Clarke at Stonehenge as a one-year-old with his father in 1998

    File size: 1.0 MB

    Attribution: Curtin University

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Professor Richard Bevins examining Bluestone Stone 46
    Professor Richard Bevins examining Bluestone Stone 46

    File size: 1.6 MB

    Attribution: Professor Nick Pearce, Aberystwyth University

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Professor Richard Bevins at Craig Rhos-y-Felin
    Professor Richard Bevins at Craig Rhos-y-Felin

    File size: 4.9 MB

    Attribution: Christine Faulkner

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Curtin PhD candidate Anthony Clarke studying samples in the lab
    Curtin PhD candidate Anthony Clarke studying samples in the lab

    File size: 995.9 KB

    Attribution: Curtin University

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Curtin PhD candidate Anthony Clarke in the lab
    Curtin PhD candidate Anthony Clarke in the lab

    File size: 1.2 MB

    Attribution: Curtin University

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

  • Professor Nick Pearce at Carn Goedog, a source of Stonehenge bluestones
    Professor Nick Pearce at Carn Goedog, a source of Stonehenge bluestones

    File size: 3.9 MB

    Attribution: Professor Richard Bevins, Aberystwyth University.

    Permission category: © - Only use with this story

    Last modified: 08 Jul 2025 10:44pm

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

Show less
Show more

Media contact details for this story are only visible to registered journalists.