Seawater split to produce green hydrogen

Publicly released:
Australia; SA

Researchers have successfully split seawater without pre-treatment to produce green hydrogen.

News release

From: The University of Adelaide

Researchers have successfully split seawater without pre-treatment to produce green hydrogen.

The international team was led by the University of Adelaide’s Professor Shizhang Qiao and Associate Professor Yao Zheng from the School of Chemical Engineering.

“We have split natural seawater into oxygen and hydrogen with nearly 100 per cent efficiency, to produce green hydrogen by electrolysis, using a non-precious and cheap catalyst in a commercial electrolyser,” said Professor Qiao.

A typical non-precious catalyst is cobalt oxide with chromium oxide on its surface.

“We used seawater as a feedstock without the need for any pre-treatment processes like reverse osmosis desolation, purification, or alkalisation,” said Associate Professor Zheng.

“The performance of a commercial electrolyser with our catalysts running in seawater is close to the performance of platinum/iridium catalysts running in a feedstock of highly purified deionised water.

The team published their research in the journal Nature Energy.

“Current electrolysers are operated with highly purified water electrolyte. Increased demand for hydrogen to partially or totally replace energy generated by fossil fuels will significantly increase scarcity of increasingly limited freshwater resources,” said Associate Professor Zheng.

Seawater is an almost infinite resource and is considered a natural feedstock electrolyte. This is more practical for regions with long coastlines and abundant sunlight. However, it isn’t practical for regions where seawater is scarce.

Seawater electrolysis is still in early development compared with pure water electrolysis because of electrode side reactions, and corrosion arising from the complexities of using seawater.

“It is always necessary to treat impure water to a level of water purity for conventional electrolysers including desalination and deionisation, which increases the operation and maintenance cost of the processes,” said Associate Professor Zheng.

“Our work provides a solution to directly utilise seawater without pre-treatment systems and alkali addition, which shows similar performance as that of existing metal-based mature pure water electrolyser.”

The team will work on scaling up the system by using a larger electrolyser so that it can be used in commercial processes such as hydrogen generation for fuel cells and ammonia synthesis.

Attachments

Note: Not all attachments are visible to the general public. Research URLs will go live after the embargo ends.

Research Springer Nature, Web page The URL will go live after the embargo ends
Journal/
conference:
Nature Energy
Research:Paper
Organisation/s: The University of Adelaide
Funder: This work was supported by the Natural Science Foundation of China (52071231 and 51722103) and the Natural Science Foundation of Tianjin city (19JCJQJC61900). Y.Z. acknowledges funding from the Australian Research Council (DP190103472 and FT200100062). S.-Z.Q. acknowledges funding from the Australian Research Council (FL170100154 and DP220102596).
Media Contact/s
Contact details are only visible to registered journalists.