Bugs and germs from cow tums could break down plastic

Publicly released:
International

Bacteria residing in bovine bellies can digest some types of plastic, such as polyesters used in textiles, packaging, and compostable bags. Austrian researchers suspected bugs and germs could play a part because cattle already dine out on natural plant polyesters, leading the team to investigate the ability of cow-belly bacteria to break down plastic. They sourced stomach liquid from a slaughterhouse to get micro-organisms to test. The authors say while their work was only done in the lab, the findings may offer a green alternative for cutting down plastic waste.

Media release

From: Frontiers

Title: Microbes in cow stomachs can break down plastic

Subtitle: Microorganisms found in the rumen, one of the compartments that make up the cow stomach, can break down plastics, representing an eco-friendly way to reduce litter

Summary: Bacteria found in cow stomachs can be used to digest polyesters used in textiles, packaging, and compostable bags, according to a new study by the open access publisher Frontiers. Plastic is notoriously hard to break down, but microbial communities living inside the digestive system of animals are a promising but understudied source of novel enzymes that could do the trick. The new findings present a sustainable option for reducing plastic waste and litter, co-opting the great metabolic diversity of microbes.

Main text: Plastic is notoriously hard to break down, but researchers in Austria have found that bacteria from a cow’s rumen – one of the four compartments of its stomach – can digest certain types of the ubiquitous material, representing a sustainable way to reduce plastic litter.  
The scientists suspected such bacteria might be useful since cow diets already contain natural plant polyesters. “A huge microbial community lives in the rumen reticulum and is responsible for the digestion of food in the animals,” said Dr Doris Ribitsch, of the University of Natural Resources and Life Sciences in Vienna, “So we suspected that some biological activities could also be used for polyester hydrolysis,” a type of chemical reaction that results in decomposition. In other words, these microorganisms can already break down similar materials, so the study authors thought they might be able to break down plastics as well.

Ribitsch and her colleagues looked at three kinds of polyesters. One, polyethylene terephthalate, commonly known as PET, is a synthetic polymer commonly used in textiles and packaging. The other two consisted of a biodegradable plastic often used in compostable plastic bags (polybutylene adipate terephthalate, PBAT), and a biobased material (Polyethylene furanoate, PEF) made from renewable resources.

They obtained rumen liquid from a slaughterhouse in Austria to get the microorganisms they were testing. They then incubated that liquid with the three types of plastics they were testing (which were tested in both powder and film form) in order to understand how effectively the plastic would break down.

According to their results, which were recently published in Frontiers in Bioengineering and Biotechnology, all three plastics could be broken down by the microorganisms from cow stomachs, with the plastic powders breaking down quicker than plastic film. Compared to similar research that has been done on investigating single microorganisms, Ribitsch and her colleagues found that the rumen liquid was more effective, which might indicate that its microbial community could have a synergistic advantage – that the combination of enzymes, rather than any one particular enzyme, is what makes the difference.

While their work has only been done at a lab scale, Ribitsch says, “Due to the large amount of rumen that accumulates every day in slaughterhouses, upscaling would be easy to imagine.” However, she cautions that such research can be cost-prohibitive, as the lab equipment is expensive, and such studies require pre-studies to examine microorganisms. 
Nevertheless, Ribitsch is looking forward to further research on the topic, saying that microbial communities have been underexplored as a potential eco-friendly resource.

###

Attachments

Note: Not all attachments are visible to the general public. Research URLs will go live after the embargo ends.

Research Frontiers, Web page
Journal/
conference:
Frontiers in Bioengineering and Biotechnology
Research:Paper
Organisation/s: University of Natural Resources and Life Sciences (Austria), Austrian Centre of Industrial Biotechnology (Austria), University of Innsbruck (Austria)
Funder: The COMET center: acib: Next Generation Bioproduction is funded by BMVIT, BMDW, SFG, Standortagentur Tirol, Government of Lower Austria und Vienna Business Agency in the framework of COMET - Competence Centers for Excellent Technologies. The COMET-Funding Program is managed by the Austrian Research Promotion Agency FFG.
Media Contact/s
Contact details are only visible to registered journalists.