Tracing 13 billion years of history by the light of ancient quasars

Publicly released:
Australia; VIC
MNRAS
MNRAS

Astrophysicists in Australia have shed new light on the state of the universe 13 billion years ago by measuring the density of carbon in the gases surrounding ancient galaxies. 

Media release

From: Swinburne University of Technology

Astrophysicists in Australia have shed new light on the state of the universe 13 billion years ago by measuring the density of carbon in the gases surrounding ancient galaxies. 

The study adds another piece to the puzzle of the history of the universe. It shows the amount of warm carbon suddenly increased by a factor of five over a period of only 300 million years – the blink of an eye in astronomical timescales.

ASTRO 3D Postdoctoral Research Associate at Swinburne University of Technology Dr Rebecca Davies is the lead author of this study.

“We found that the fraction of carbon in warm gas increased rapidly about 13 billion years ago, which may be linked to large-scale heating of gas associated with the phenomenon known as the ‘Epoch of Reionisation’,” she says.

While previous studies have suggested a rise in warm carbon, much larger samples – the basis of the new study – were needed to provide statistics to accurately measure the rate of this growth. 

“That's what we've done here. And so, we present two potential interpretations of this rapid evolution,” says Dr Davies.  

The first is that there is an initial increase in carbon around galaxies simply because there is more carbon in the universe.  

“During the period when the first stars and galaxies are forming, a lot of heavy elements are forming because we never had carbon before we had stars,” Dr Davies says. “And so, one possible reason for this rapid rise is just that we're seeing the products of the first generations of stars.” 

However, the study also found evidence that the amount of cool carbon decreased over the same period. This suggests that there might be two different phases in the evolution of the carbon – a rapid rise while reionisation occurs, followed by a flattening out. 

The Epoch of Reionisation, which took place when the universe was “only” one billion years old, was when the lights came back on after the cosmic Dark Ages following the Big Bang.  

Before this the universe was a dark, dense fog of gas. But as the first massive stars formed, their light began to shine through space and reionise the cosmos. This light may have led to rapid heating of the surrounding gas, causing the rise in warm carbon observed in this study. 

Studies of reionisation are vital to understand when and how the first stars formed and began producing the elements that exist today. But measurements have been notoriously difficult. 

“The research led by Dr Davies was built on an exceptional sample of data obtained during 250 hours of observations on the Very Large Telescope (VLT) at the European Southern Observatory in Chile,” says Dr Valentina D’Odorico from the Italian Institute for Astrophysics, the Principal Investigator of the observational programme. “This is the largest amount of observing time assigned to a single project carried out with the X-shooter spectrograph. 

“Thanks to the 8m VLT we could observe some of the most distant quasars, which act as flashlights, illuminating galaxies along the path from the early Universe to the Earth." 

As the quasar light passes through galaxies in its 13-billion-year journey across the universe some photons are absorbed, creating distinctive barcode-like patterns in the light, which can be analysed to determine the chemical composition and temperature of gas in the galaxies. 

This gives an historical picture of the development of the universe. 

“These ‘barcodes’ are captured by detectors at the VLT’s X-Shooter spectrograph,” Dr Davies explains. 

“This instrument splits the galaxy light into different wavelengths, like putting light through a prism, allowing us to read the barcodes and measure the properties of each galaxy.” 

The study led by Dr Davies captured more barcodes of ancient galaxies than ever before. 

This major advance was enabled by the ESO VLT, one of the most advanced telescopes on Earth, and a strategic partner of Australia.  

Astronomers are using many different types of data to build a history of the universe. 

“Our results are consistent with recent studies showing that the amount of neutral hydrogen in intergalactic space decreases rapidly around the same time,” says Dr Davies. 

“This research also paves the way for future investigations with the Square Kilometre Array (SKA) which aims to directly detect emission from neutral hydrogen during this key phase of the universe's history.” 

The research was a collaboration between: Swinburne University of Technology; the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D); INAF-Osservatorio Astronomico di Trieste; IFPU-Institute for Fundamental Physics of the Universe, Trieste; Scuola Normale Superiore, Pisa; Max-Planck - Institut für Astronomie, Heidelberg, Germany; the University of California, Riverside; Leibniz Institute for Astrophysics Potsdam (AIP); MIT Kavli Institute for Astrophysics and Space Research, Gemini Observatory and NSF’s NOIRLab, Hawai’i; and the University of Cambridge. 

Multimedia

Rebecca Davies
Rebecca Davies
Journal/
conference:
Monthly Notices of the Royal Astronomical Society
Research:Paper
Organisation/s: Swinburne University of Technology
Funder: N/A
Media Contact/s
Contact details are only visible to registered journalists.