Higher CO2 boosts plant growth, reducing forest soil's ability to store carbon

Publicly released:
Australia; International; NSW
CC-0
CC-0

When the biomass of plants increases in response to rising carbon dioxide levels, the amount of carbon the soil is able to store decreases, according to international scientists, including Australians. They ran more than 100 experiments growing plants in elevated CO2 levels, and found the greenhouse gas boosts plant growth in forests, which in turn reduces the amount of carbon the soil can store. As plants grow, their roots mine the soil for nutrients, which may decrease the ability of the soil to store carbon, the authors suggest. However, in grasslands, higher CO2 actually increased the amount of carbon stored in soil by 8 per cent. Current simulations of land-based carbon sinks do not account for this trade-off, the researchers say, so future projections may need to be revised. 

Media release

From: Springer Nature

Plants and soils may trade ability to store carbon

When the biomass of plants increases in response to rising carbon dioxide levels, the amount of carbon the soil is able to store decreases, according to an analysis of over 100 experiments published in Nature. Current models of terrestrial carbon sinks do not account for this trade-off, so future projections may need to be revised. 

Terrestrial ecosystems remove about 30% of the carbon dioxide emitted by human activities every year. Plants sequester carbon dioxide as they use photosynthesis to fuel their growth, whereas soils lock carbon away as biomass decays. However, as carbon dioxide emissions continue to rise, it is unclear how this carbon sink may respond. 

One hypothesis suggests that rising levels of atmospheric carbon dioxide will increase the ability of both plants and soil to sequester carbon, but César Terrer and colleagues show that this may not be the case. Analysing data from 108 elevated carbon dioxide experiments, the authors reveal an inverse relationship. When plant biomass increases as a result of elevated carbon dioxide levels, storage of carbon in the soil declines. In their experiments, elevated carbon dioxide levels resulted in an increase in soil stocks of carbon in grasslands (by around 8%), but not in forests. This was despite an increase in forest biomass of around 23%.

The authors suggest that this trade-off could be related to the way that plants acquire their nutrients. As plants grow, their roots mine the soil for nutrients. This may decrease the ability of the soil to sequester carbon, the authors conclude.

Attachments

Note: Not all attachments are visible to the general public. Research URLs will go live after the embargo ends.

Research Springer Nature, Web page The URL will go live after the embargo ends
Journal/
conference:
Nature
Research:Paper
Organisation/s: Western Sydney University, Lawrence Livermore National Laboratory, USA
Funder: C.T. was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL). This work was performed under the auspices of the US Department of Energy by LLNL under contract DE-AC52-07NA27344 and was supported by the LLNL-Laboratory Directed Research and Development (LDRD) programme under project number 20-ERD-055. J.B.F. contributed to this research from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. Funding provided in part by the NASA Interdisciplinary Science (IDS) programme, and by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program under Award Numbers DE-SC0008317, DE-SC0016188 and the LLNL Soil Science Focus Area (SFA) SCW1632. B.A.H. and K.J.v.G. were supported by the US Department of Energy through the Terrestrial Ecosystem Science Program DE-SC0010632. The FACE Model-Data Synthesis was supported by the US Department of Energy, Office of Science, Biological and Environmental Research programme. Oak Ridge National Laboratory is operated by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy. The BioCON experiment was funded by the Long-Term Ecological Research (LTER) grants DEB-0620652, DEB-1234162 and DEB-1831944, Long-Term Research in Environmental Biology (LTREB) grants DEB-1242531 and DEB-1753859, Biological Integration Institutes grant NSF-DBI-2021898, Ecosystem Sciences grant DEB-1120064, and Biocomplexity grant DEB- 0322057, and by the US Department of Energy Programs for Ecosystem Research grant DE-FG02-96ER62291.
Media Contact/s
Contact details are only visible to registered journalists.