Biosensors woven into clothing could detect airborne COVID-19

Publicly released:
International
Photo by Arya Pratama on Unsplash
Photo by Arya Pratama on Unsplash

Special biosensors embedded in clothing could detect bacteria and viruses including COVID-19, according to international researchers who say this technology could be used in face masks for primary care workers. The biosensors, which use nucleic acids to detect nasty bugs with high sensitivity and accuracy, are made using freeze-dried, cell-free synthetic CRISPR technology which is flexible enough to be placed into clothing. The authors suggest that the technology could be woven into face masks to enable the detection of airborne COVID-19.

Media release

From: Springer Nature

Synthetic biology: Wearable nucleic acid biosensors for pathogen detection

Nucleic acid biosensors embedded in textiles can detect bacterial or viral pathogens—including SARS-CoV-2—according to a paper published in Nature Biotechnology this week. The technology could be incorporated into face masks with diagnostic capabilities for those working in environments that present a high risk of pathogen exposure, such as primary care settings.

Using synthetic biology approaches, nucleic acid biosensors that detect pathogens can be designed with high sensitivity and accuracy. Such diagnostic tools, which contain genetically encoded circuits for the detection of pathogen nucleic acids, have conventionally been used to detect pathogens like SARS-CoV-2 in traditional formats in point-of-care settings. However, a few examples exist where these pathogen-sensing circuits have been freeze-dried and embedded in flexible materials for use in apparel. Previous textiles have been created by encapsulating bacteria with sensory capabilities, yet engineered organisms are challenging to integrate and maintain. Cell-free synthetic biology sensors overcome these limitations.

James Collins and colleagues manufactured a set of wearable, freeze-dried, cell-free synthetic biology sensors that use CRISPR technology. They are activated by rehydration and report the presence of virus-specific genetic material. The authors demonstrate that these wearable sensors match the performance of gold-standard laboratory methods and can be integrated into flexible substrates, such as silicone elastomers and textiles, for real-time dynamic monitoring of target pathogen exposure. This technology can even be woven into a face mask to make it capable of detecting airborne SARS-CoV-2.

The successful integration of synthetic biology sensors within wearable fabrics signifies a first step towards the manufacturing of multifunctional, smart apparel for biomedical applications and beyond.

Journal/
conference:
Nature Biotechnology
Research:Paper
Organisation/s: Harvard University, USA
Funder: This work was supported by the Defense Threat Reduction Agency grant no. HDTRA1-14-1-0006, the Paul G. Allen Frontiers Group, the Ragon Institute of MGH, MIT and Harvard award no. 234640, the Patrick J. McGovern Foundation, the Wyss Institute for Biologically Inspired Engineering, Harvard University (J.J.C., P.Q.N., L.R.S., N.M.A.-M., H.P., N.M.D.) and by Johnson & Johnson through the J&J Lab Coat of the Future QuickFire Challenge award 2018. L.R.S. was also supported by CONACyT grant no. 342369/408970, and N.M.A.-M. was supported by an MIT-TATA Center fellowship, no. 2748460.
Media Contact/s
Contact details are only visible to registered journalists.