Animal studies suggest new cancer vax could bypass tumours' defences

Publicly released:
International
Image by k-e-k-u-l-é from Pixabay
Image by k-e-k-u-l-é from Pixabay

A new type of cancer vaccine has been shown to work and be safe in mice and monkeys in a preliminary study by international researchers, which found the vaccine is able to defeat the ability of some cancers to avoid vaccine-induced immune attacks. The vaccine is able to generate a coordinated and general attack on tumour cells by the host's immune system, improving on vaccines that target specific cancer proteins which cancers often alter to avoid detection. The researchers say future clinical trials will be needed to evaluate this potential in humans.

Media release

From: Springer Nature

Cancer: Improving cancer vaccine design

A new type of cancer vaccine that can thwart the defensive response of tumours to vaccine-induced immune attack, is presented in Nature. Preliminary results demonstrate the efficacy and safety of this vaccine in mice and nonhuman primates. The preclinical findings could pave the way for further testing to determine clinical applicability.

Most cancer vaccines target the specific cell surface proteins (antigens) that are expressed by tumour cells, helping the immune system to recognize and attack these cells. However, the nature and immunogenicity (ability to stimulate an immune response) of these antigens is unique to each individual, limiting the development of a universal vaccine. Furthermore, tumours can often escape immune attack by mutating and altering antigen presentation, thereby reducing their recognition. 

Kai Wucherpfennig and colleagues present a new design of cancer vaccine that can overcome individual variations in tumour immunity by targeting two major types of immune cells (T cells and natural killer (NK) cells) and eliciting a coordinated, general attack independent of the tumour’s antigens. This vaccine targets two types of surface protein — MICA and MICB — whose expression is increased under stress in various human cancers. T cells and NK cells are normally activated by binding to these stress proteins, yet tumour cells can evade this attack by slicing MICA and MICB and shedding them. This vaccine, however, can prevent this slicing, thereby increasing the amount of stress protein expression and, consequently, facilitating the stimulation of an orchestrated, dual attack from T and NK cells. The authors reveal that this vaccine is both efficacious and safe in preliminary experiments using mouse and rhesus macaque models.

The authors conclude that these initial results reveal that this vaccine is capable of promoting protective immunity against tumours, even those with evasive mutations. Future clinical trials will be needed to evaluate this potential in humans.

Journal/
conference:
Nature
Research:Paper
Organisation/s: Dana-Farber Cancer Institute, USA
Funder: This work was supported by James and Tania McCann (to K.W.W.), the Parker Institute for Cancer Immunotherapy (PICI; to K.W.W.), the Ludwig Center at Harvard Medical School (to K.W.W.), NIH grants R01 CA238039, R01 CA251599, P01 CA163222 and P01 CA236749 (to K.W.W.), R01 CA234018 (to K.W.W.) and R01 CA223255 (to D.J.M.), and a sponsored research agreement with Novartis (to K.W.W.). S.B. was supported by a US Department of Defense fellowship (DOD CA150776) and was the 2018 Baruj Benacerraf Fellow in Immunology.
Media Contact/s
Contact details are only visible to registered journalists.