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New measurements indicate that the public are
being exposed, without their knowledge, to airborne
ultrasound. Existing guidelines are insufficient
for such exposures; the vast majority refers to
occupational exposure only (where workers are
aware of the exposure, can be monitored and can
wear protection). Existing guidelines are based on
an insufficient evidence base, most of which was
collected over 40 years ago by researchers who
themselves considered it insufficient to finalize
guidelines, but which produced preliminary
guidelines. This warning of inadequacy was lost
as nations and organizations issued ‘new’ guidelines
based on these early guidelines, and through such
repetition generated a false impression of consensus.
The evidence base is so slim that few reports have
progressed far along the sequence from anecdote
to case study, to formal scientific controlled trials
and epidemiological studies. Early studies reported
hearing threshold shifts, nausea, headache, fatigue,
migraine and tinnitus, but there is insufficient research
on human subjects, and insufficient measurement of
fields, to assess what health risk current occupational
and public exposures might produce. Furthermore,
the assumptions underpinning audiology and
physical measurements at high frequencies must
be questioned: simple extrapolation of approaches
used at lower frequencies does not address current
unknowns. Recommendations are provided.

2015 The Author(s) Published by the Royal Society. All rights reserved.
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1. Executive summary

(a) The history
For over 40 years, there have been reports of hearing threshold shift [1] and a range of subjective
effects (nausea, dizziness, migraine, fatigue, tinnitus and ‘pressure in the ears’ [1–8]) from
ultrasound in air to which workers have been routinely exposed (plus other symptoms that have
not occurred in more than one study; §3b). The degree of response, from significant to none,
varied between workers. The evidence base has not studied sufficient numbers of subjects, and
has not been sufficiently sensitive to the presence of sensitive individuals, or sensitive subgroups,
within the population, to support the guidelines required today. Studies focused on occupational
exposure to ultrasound, which tends also to occur alongside high levels of audible sound, and
the effect of this audio frequency noise on the observed effects must be isolated because there
is increasing public exposure to ultrasound without such audible cues. Measurement methods
and audiological procedures in the past have tended to follow extrapolations of methods used
in the audio frequency range which, alongside the calibrations and allowed tolerances of the
equipment used, must be critically examined (§3a). It is therefore no simple matter to measure
the very high frequency/ultrasonic (VHF/US) fields to which people are exposed, either in situQ5

or during audiological testing, and relate those to the levels quoted in past studies. Consequently,
the evidence to date has been wholly inadequate to inform the development of guidelines for the
increasing exposure of the public to ultrasound in air, and is suspect for occupational exposure.

(b) The need for evidence
Policymakers need guidelines from which to work. Guidelines must be based on good evidence.
Evidence must be collected with reliable measurement methods and calibrations, and this is
unlikely to be possible by simply extending to the ultrasonic regime the established procedures
used in audiology, acoustical engineering, and metrology at audio frequencies. There must be
a sufficient volume of evidence to be statistically significant, and it must not ignore possible
variations in sensitivity seen in the population, and between and within subsets of the population.

UK clinicians are unlikely to consider ultrasound in their differential diagnosis when
encountering the symptoms listed earlier, as it is not well recognized and not included in any
of the relevant NICE (UK National Institute for Health and Care Excellence) publications, which
are all evidence based.

For both policymakers and clinicians, the evidence base is inadequate to predict the health
risk and discomfort likely to be seen in the general population as a result of public exposure
to ultrasound in air. Even for occupational exposure the evidence base is too small (if it were
adequate, we would not see a factor of over 3 million in intensity between the lowest and
highest guidelines at 20 kHz). When the research has not been done, assurances such as ‘there
are no studies that show any issues of long term exposure to airborne ultrasound . . . despite
many years of human exposure to existing ultrasound sources’ [9] take on a different meaning
compared to similar statements made about research-rich fields. Lack of evidence and reliable
physical measurements is not currently a stimulus for evidence gathering, but rather is providing
a situation of uncertainty and confusion that enables manufacturers and those responsible for
public places to deploy devices that insonify the public. The current lack of evidence makes
it unlikely that clinicians will consider it a possible cause when confronted with patients
experiencing these symptoms.

The evidence base has not progressed far up the hierarchy from manufacturer claims and
individual anecdotes, to case and cohort studies and laboratory testing, all the way up to
randomized controlled trials. In such a dearth of scientific and medical data, those least reliable
items that form the base of this hierarchy cannot be ignored, and therefore, web pages are
perforce cited at times in this study. Given that we must be sceptical even of articles in peer
reviewed journals of high quality, we must be increasingly sceptical of citations further down the
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publication hierarchy, from non-peer reviewed articles (professional journals, most conferences)
down to web pages.

This paper presents new measurements that demonstrate human exposure to airborne
ultrasound in public places, including railway stations, museums, libraries, schools and sports
stadia. It argues that the guidelines for protecting humans from airborne ultrasound vary and
are uniformly inadequate: for energy above 22.4 kHz, they are based on avoiding ultrasonically
induced hearing damage at the lower frequencies used to understand speech, taking no account
of reports of the ability of airborne ultrasound in occupational settings to cause nausea, dizziness,
tinnitus, fatigue, migraine and headaches. The scepticism to reports of symptoms by the public is
supported by the scarcity of attempts to measure such fields, and lack of a proposed mechanism
by which such effects are produced, both of which this paper has taken the initial steps to address.
Furthermore, the guidelines are based on the average response of small groups, often of adult
males, whereas recent data suggest 1 in 20 people aged 40–49 years have hearing thresholds that
at least 20 dB more sensitive at 20 kHz than the average 30–39 year olds [10]. Moreover, 5% of the
5–19 year age group is reported to have a 20 kHz threshold, that is 60 dB more sensitive than the
median for the 30–39 year age group [10]. There will therefore be significant numbers of the public
(with a greater proportion seen among children) who have significantly better VHF/US hearing
acuity than the ‘average’ on which current guidelines are based. While this does not allow us
to extrapolate what adverse effects this might cause, it suggests that the underpinning scientific
research on which guidelines have been set are inadequate for current exposures.

(c) Objectives
The objectives of this paper are:

— to show that the public is being exposed to VHF sound and US on a mass basis;
— to show that the current state of knowledge is inadequate to make an assessment of the

safety of such exposures, current guidelines being based on inadequate data; and
— to draw attention to the need to understand what mechanisms might be capable of

generating the symptoms listed above following exposure to VHF sound and ultrasound.

(d) Recommendations
For exposure to airborne VHF sound and ultrasound, this paper recommends that

— No new guidelines must be based primarily on selection of levels quoted in older
guidelines, as this gives the incorrect impression of consensus, independence and the
consideration of new science.

— Guidelines for occupational exposure must not be applied to public or residential
exposure, and recognition must be given to exposure of long-term ‘guests’ (in schools,
hospitals, prisons, public transport etc.).

— All new guidelines must indicate from what research base they are drawn, and
where they have been unable to draw on any such research base (e.g. when making
recommendations on durations of exposure, sensitive subgroups etc.).

— Studies and new guidelines must take account of the deviation from the average of
individuals within a population, and within particular demographic subsets within the
population.

— New guidelines must consider the implications of the duration of exposure in a rigorous
manner with an appropriate scientific basis.

— Research must be undertaken in recognition that the fundamental science upon which all
existing guidelines have been based is not sufficiently substantial.

— Research is required to ensure that guidelines properly account for which adverse effects
should be minimized or prevented.
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— Research must be undertaken to consider whether specifying only third octave levels in
guidelines is appropriate for narrowband and tonal exposures.

— Research must be undertaken to support guidelines in specific recognition that current
public exposures to narrowband or tonal ultrasonics may not be accompanied by the high
levels of audio frequency sound that was typical of most of the occupational ultrasound
studies on which the current guidelines are based.

— All data must be examined for its statistical significance before conclusions are drawn, in
particular, with regards to sample size, number of studies and the degree to which the
sample represents the relevant population.

— Attention must be paid to the fact that international standards for the specification of
noise measurement instrumentation do not adequately address the requirements for
measuring airborne VHF sound and ultrasound. For example, at 20 kHz a sound level
meter can over-read by 40% or under-read without limit (tolerances from +3 dB to
−∞ dB), and still meet even the most stringent requirements of the standard. For higher
frequencies there are virtually no performance specifications. Standards specifying a new
type of instrumentation for airborne VHF sound and ultrasound are therefore required.

— Research must be undertaken to assess whether current audiological practices,
equipment and standards are suitable for the VHF and ultrasonic regimes, and identify
measures to rectify any shortcomings.

— A current survey of modern devices and their source levels (using international standard
procedures and calibrations traceable back to primary standards) should be undertaken.

— A statement from manufacturers of the source level and spectral content (using
international standard procedures and calibrations traceable back to primary standards)
of the output of VHF/US if above a yet-to-be-determined spectral level; a statement of
the purpose of the sound; an assessment of the levels when deployed in the field.

Subsidiary recommendations are listed in §5.

2. Overview

(a) Mass public exposure of today versus occupational exposure of the past
(i) Public exposure and the decibel

Take a smart phone or tablet computer, equip it with an App capable of producing a spectrogram
of the microphone reading, and see whether you can detect airborne ultrasound in a public
place (appendix A). Because some such devices (such as the iPhone 5� and iPad Air 2�) have
microphones capable of monitoring above 20 kHz (appendix A), you may detect a tone (as in
figure 1a) or alternatively pulses, at frequencies close to 20 kHz. The data in figure 1 were recorded
in two large hallways, in public buildings, at a time when they were occupied and traversed
by hundreds of people. In both, there were loudspeakers placed every few metres. Figure 1a
was recorded in the main lobby of a major public library, open on several levels, that contained
walkways, workstations for staff and visitors, and seating areas where many people (including
infants) sat directly under the ceiling-mounted loudspeakers. The only occupancy data the author
could find for this library sums both actual and virtual visitors, totalling over 3 million each year.
In the absence of plans, the author estimates this lobby to measure approximately 50 m by 50 m
by 15 m high.

The smartphone or tablet is a convenient and inexpensive method of immediately testing for
the presence of ultrasound, although it comes with many limitations (e.g. uncertainty regarding
the reported levels) and drawbacks (the possibility of increased awareness causing anxiety in
some individuals). To make calibrated measurements for this paper, either three (figure 1b,c) or
two (figure 2) independent microphone and data acquisition systems were deployed, all with
calibrations traceable back to a primary standard (see appendix A for details).
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Figure 1. Acoustic field measurements taken by (a) an iPhone 5� in a public library (the horizontal arrow indicating the main
tone at approx. 19.2 kHz) and (b) a calibratedmicrophone in a railway station. (a) The temporary placement of the author’s finger
over themicrophone (as indicated by the vertical arrows) allows the signal to be confirmed as acoustic and not electromagnetic
pickup (see appendix A). Spectrograms (a,b) plot how the distribution of energy across frequencies varies in time. These data can
be summedover time toproduce thepower spectral density (PSD, as shown in (c) for thedata in (b)). The soundpressure levels are
calibrated in (b,c) and traceable back to primary standards, but not in (a). Fluctuations in frequency in (a) are probably Doppler
and diffraction effects as the phone is moved into position. The vertical dashed lines in (c) show the upper and lower frequency
limits of the third-octave band centred on 20 kHz, and the horizontal dashed (red) line shows the level of broadband signal that
would give the same third-octave SPL as the measured ultrasonic signal. See appendix A for details on instrumentation.

Figure 1b,c records a sound pressure level (SPL) of approximately 94 dB re 20 µPa (in the third-
octave frequency band centred at 20 kHz). This was recorded at a table where the public eat in the
food concourse of the main hall of a major railway station (which hosts nearly 30 million visitors
each year). Here the loudspeakers are wall-mounted. This hall measures around 100 m by 30 m
by 20 m high and contains food outlets and shops.

In both situations, the microphones were at head height and pointed towards the loudspeakers
and approximately 1 m from the nearest speaker, locations typical of public occupancy.
Considerable audio frequency energy is evident in figure 1b, corresponding mainly to voice
announcements of train departures via the Public Address system. In the absence of specific
information, the author considered the aforementioned loudspeakers of the PAVA (public address
voice alarm) system to be the most likely to be producing the ultrasound in both the library and
the railway station, and in the recording locations of figure 2.

Figure 2a,b reports data taken in the toilets of a major swimming pool (the building as a
whole receives over 600 000 visitors per year). Figure 2c,d shows the data recorded at a world-
renowned museum that receives in excess of 3 million visitors per year (data taken in an open
hall measuring roughly 30 m by 40 m by 15 m high). These two sites produced SPLs of 77 and
63 dB re 20 µPa, respectively, in the third-octave frequency band centred at 20 kHz. One school
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Figure 2. Data taken from (a,b) toilets in a public swimming pool; and (c,d) amuseum.Whereas the signals in figures 1 and 2a,b
are continuous, the one in figure 2c,d consists of a 1 s burst every 30 s, a pattern this study has observed at several other locations
(with as much as 90 s between pulses). (b,d) The vertical dashed lines on the box show the upper and lower frequency limits
of the third-octave band centred on 20 kHz, and the horizontal dotted line shows the level of broadband signal that would give
the same third-octave SPL as the measured ultrasonic signal. See appendix A for details on instrumentation.

and one major sports stadium were also tested, and both contained signals close to 20 kHz. All
measurements were made at locations that members of the public of all ages, and local workers,
occupy on a daily basis. These locations had been identified for testing from anecdotal reports of
by members of the public claiming to have headaches, migraine, nausea, fatigue, dizziness and
an uncomfortable feeling of ‘pressure in the ears’ that they attribute to ultrasound. Should we be
concerned?

Although the symptoms correlate with those reported from occupational exposure in the
literature [1–8], participants in the historical studies were usually also exposed to high levels of
audio frequency sound. This is because unlike the devices measured in figures 1 and 2, ultrasonic
devices tested in the past (such as ultrasonic cleaning baths) generated audio frequency sound.
A further complication is that it is no simple matter to compare the dB levels measured in this
paper with those reported historically (see below). This will be discussed extensively in §3, but an
introductory example is found in figures 1 and 2. To see this, note that the dB levels labelled
against the peaks in figures 1c and 2b,d do not match the levels on the graphs’ vertical axes
(and a third level is shown by the horizontal dotted line, and a fourth—the energy in the peak
itself—both to be discussed later). That it is possible to report four different dB levels from the
same data, even after an extensive careful calibration, is a very important point that should be
borne in mind when assessing historical reports of dB levels: it is vital that there is sufficient
metadata to understand what is being reported. When plotting a spectrum from the voltage time
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history output of a sensor (used here as a more general proxy for acoustic pressure as monitored
by microphone), there are a number of conventions. With the frequency usually plotted on the
abscissa, the four most common options for the vertical axis are: V Hz−1; V2 Hz−1; V; V2. Clearly,
the representations that use V2 in preference to V are plotting a parameter which reflects a
function related to the power of the signal, as opposed to the amplitude. The advantage of using
Hz−1 comes from the common interpretation of a spectrum as a histogram, as the frequency
bins will be finite: changing the width of these bins should affect the amplitude of the spectral
level plotted [11]. This is certainly appropriate for broadband signals, and it is these which have
usually been considered when setting third-octave limits shown in figure 3, almost all of which
are guidelines for occupational exposures to ‘VHF/US’ (using this label throughout this article to
mean ‘VHF sound: 12–20 kHz or US greater than 20 kHz’, noting that some authorities place the
lower frequency limit for ultrasound at 10 kHz [2], 15 kHz [30], 16 kHz [5,31] or 18 kHz [12] rather
than 20 kHz [32]). It seems likely that setting guidelines based on the energy in a third-octave
band for VHF/US followed standard practice for exposure to audio frequency occupational noise,
which tends to be broadband, and the design of commercial sound level meters (appendix A).
However, stating maximum permissible levels (MPLs) in terms of the energy allowed in a third-
octave band is problematic if the signal is narrowband, as are the examples in figures 1 and 2.
These examples are nearly tonal, and for purely tonal signals, the energy in the bin that contains
the signal is independent of the bin width, as all the energy is at a single frequency, i.e. it has
zero bandwidth. Only one of the bins will contain non-zero energy. Division of the energy of
that bin by the bandwidth of the bin simply causes the spectral peak corresponding to the sine
wave to reduce in amplitude as the bin width increases. As a result, the parameters V and V2 are
sometimes used in preference to V Hz−1 and V2 Hz−1, if the signal is perceived to more closely
resemble a sinewave than a broadband signal.

In figures 1c and 2b,d, the vertical axis is plotted as the power spectral density (PSD; dB re
(20 µPa)2 per Hz). The horizontal dotted line (red in the online version of the paper) shows that
level which would give the identical third-octave level if the energy were equally distributed
across frequencies in the band centred on 20 kHz (the upper and lower frequencies of which
are shown by the vertical dotted line). However, the actual measured signal is narrowband so
that, given the preceding paragraph, it makes sense also to express this in terms of the SPL over
the frequency bin that contains most energy: as the frequency resolution of the PSD is 23.4 Hz,
this ‘peak SPL’ level is 10 log10(23.4) = 13.7 dB higher than the maximum PSD level for this peak
(shown on the vertical axis). Its peak SPL is 10 log10(22 400 − 17 800) = 36.6 dB higher than the
horizontal dotted line that would score exactly the same when compared with the third-octave
levels of the guidelines (figure 3). When integrated across just the frequency range of the peak
itself (as opposed to the whole third-octave band), loss of the energy contained in the background
signal outside the narrow band covered by the peak gives SPLs of 92 (figure 1c), 75 (figure 2b) and
61 (figure 2d) dB re 20 µPa.

The range of available guidelines [3,7,12–28,33,34] is plotted in figure 3. Almost all refer to the
MPL allowable for occupational exposures for 8 h a day, 5 days a week, in each third-octave band.
Comparison of these for near-tonal signals of figures 1 and 2 is therefore problematic, particularly,
if those exposures are not occupational.

The problems increase when we consider the limitations of the underpinning research on
which the guidelines are based, the misinterpretations of these, and would worsen if we were
to introduce the subjective or annoyance effects that different signals elicit. These issues will be
discussed in §2b.

As a postscript on the use of dB levels in this paper, ISO [35] allows use of a reference intensity
of 10−12 W m−2 or a reference RMS pressure of 20 µPa when stating dB levels for sound in air. The
human ear is a pressure sensor (intensity of course being a vector) and reference RMS pressure
of 20 µPa will be used in this paper, unless otherwise stated (the microphones in figures 1b,c
and 2 were calibrated in terms of pressure). Conversion between intensity and pressure assumes
knowledge of the geometry of the wavefront and knowledge of the pressure and density at
the reference and measurement points, oversight of which can lead to errors and ambiguities
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Figure 3. Maximumpermissible sound pressure levels for VHF sound and ultrasound in air, as laid out by a range of individuals,
groups and organizations [3,7,12–29]. The use of boxes indicates ‘families’ of similar guidelines: most of the data are repeats or
reviews of earlier works, such that this figure is actually based on a handful of original studies. The figure groups all guidelines
to the nearest 5 dB, which is accurate for all but theminority of guidelines that use finer gradations (see appendix B for this and
other important details). Unless otherwise stated, the guidelines refer to the one-third octave level.

[36], though these are unlikely for the type of measurements reported in this paper. In general,
even when using calibrated microphones, because of both the equipment and the processing

Q1

issues it is probably prudent to include approximately 3 dB expanded uncertainty when assessing
calculations made from field microphone measurements [37,38], and any guidelines (current
or historical) following from them. Radosz [27,39] discusses the difficulties associated with
calibration on field measurements at these frequencies.

(ii) The crux of the matter

In assessing the issue of human exposure to ultrasound in air, the heart of the matter is this:
advances in the ability to market inexpensive commercial ultrasonic sources have led to their
increased use, exposing large numbers of people. Industrial ultrasonic devices, for cleaning,
drilling, homogenizing etc. have been around for decades, and form the core of historical
interest in developing guidelines and in the underpinning research base. However, many devices
now deliver exposures that cannot be classed as occupational. Some sources are deliberately
incorporated into devices (e.g. pest scarers, some door opening sensors), while some are present
as an adjunct to the main operation of a device (e.g. in many PAVA systems). It is also possible that
some modern devices are inadvertently producing ultrasound (e.g. possibly from data projection
and lighting systems, but this needs confirmation). Output powers vary significantly between
types of device, although surveying is sparse and levels stated by manufacturers are open
to question because procedures for taking measurements traceable back to primary standards



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

ARTICLE IN PRESS

9

rspa.royalsocietypublishing.org
Proc.R.Soc.A20150624

...............................................

have only just been developed (with papers [40–42] preceding a full formal recommendation).
Exposures that, were they to be done in a laboratory would require significant consideration by,
and permission from, an ethics committee, are occurring in public spaces. Individuals are unlikely
to be aware of such exposures. Some members of the public are complaining, for themselves and
their children. No studies have been conducted to assess which, if any, of these complaints can
be traced to exposure to VHF/US. Such public exposures are not common knowledge and, on
the assumption (indeed the definition) that humans cannot hear ultrasound, their safety is rarely
questioned. Guidelines for the exposure of humans to VHF/US in air vary, but are not adequate
for current exposures because:

— Firstly, the original studies are scarce and not sufficient for guidelines (which outnumber
the source studies by around 3:1).

— Secondly, none of the guidelines that pertain to exposure above the third-octave band
centred on 20 kHz are based on avoiding effects that have been labelled as ‘subjective’
(including nausea, dizziness, tinnitus, fatigue, migraine and persistent headaches [1–8,
20,43]): at these frequencies, the guidelines are designed to avoid hearing damage at the
lower frequencies used for speech (see §2b). It is likely that the public exposures today are
at levels whereby the issue that needs consideration is whether they generate subjective
effects, and if so, what is the impact of these on quality of life, and on concentration and
productivity in work and schools, given mass exposure.

— Thirdly, these guidelines take little account of the very significant variability in sensitivity
to VHF/US of individuals, or specific demographics within the population compared
to the ‘average’ on which the guidelines are based (often an adult male from industrial
or Services employment). Recent data suggest 1 in 20 of people aged 40–49 years old
have hearing thresholds that are at least 20 dB more sensitive at 20 kHz than the average
30–39 year olds [10]. One demographic that should be investigated for departure from
the ‘population norm’ is children. The same study [10] reports that 5% of the 5–19 year
age group are reported to have a 20 kHz threshold that is 60 dB more sensitive than the
median for the 30–39 year age group [10]. Our current level of knowledge does not allow
us to say whether or not enhanced hearing acuity in the VHF/US range will affect their
chances of suffering adverse (including subjective) effects (§2b(i)), but the departures
from the ‘averages’ used to produce current guidelines clearly need investigating, as
does the change in VHF/US sensitivity during infancy and childhood. Other recent data
challenge the assumption underlying early guidelines, and repeated since, that the steep
fall-off in sensitivity seen in the average of the human adult data between 16 and 20 kHz
may be extrapolated to higher frequencies (§2b(ii)) [44].

— Fourthly, international standards for measuring ultrasonic fields are only just developing,
so that even where outputs of devices are stated, or field measurements taken, their
accuracy cannot be guaranteed unless they can be traced back to primary standards and
measurement procedures.

For these reasons, this paper asserts that the scientific basis for setting guidelines for exposure to
VHF sound and ultrasound in air is not sufficient to cope with the current mass exposure of the
public and workers, and that there is as yet an insufficient scientific basis to confirm that any of
the current guidelines are safe for large numbers of people.

Lack of research means that it is not possible to prove or disprove public health risk or
discomfort. Publication of this report comes at the cost of possibly raising anxiety and potentially
promoting symptoms in individuals who had none. However, it is important that existing
sufferers are able to identify the true cause of their symptoms, whether ultrasonic or not, and
lack of research means that it is impossible to make such an identification for the source of the
symptoms currently reported by members of the public. This paper highlights the knowledge
gap in which ultrasonic sources are being placed in public places.
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(b) Are the current guidelines appropriate for mass public exposure to tones?
Scepticism is always required when anecdotal reports of subjective symptoms are produced
by members of the public, particularly when the public attribute the cause to something
imposed upon them (a windfarm, power cable etc.) and other individuals feel no adverse effects.
However, we must also be sceptical about scepticism: it is possible for some individuals to be
particularly susceptible to certain agents (allergens being an example), and our classification
of symptoms as ‘subjective’ glosses over what we really mean by the word: all symptoms are
subjective until we develop the technology to detect and objectively measure a quantifiable
and repeatable observable (the introduction of fMRI has, for example, begun to convert some
previously subjective symptoms into observables that are quantifiable by proxy, as has recently
been investigated for infrasound [26]). Following convention, ultrasonically induced temporary
or permanent changes in the quietest sounds an individual can hear at a given frequency (called
the temporary threshold shift (TTS) and permanent threshold shift (PTS), respectively) are called
‘objective’ measures in this paper in contrast with the ‘subjective’ effects (nausea, fatigue etc.).
However, the audiological measurement of a hearing threshold is often a subjective assessment of
hearing performance, requiring individual judgement on whether the sound is detectable or not,
the extent to which that can be truthfully reported, and whether lack of repeatability in retesting
can have an identified causal link (such as recent noise exposure that is not reported by the subject
to the tester). Such tests have an objective ‘right/wrong’ answer, whereas annoyance, fatigue etc.,
are often assessed on a rating scale with no ‘right/wrong’ answer. This, and the tendency for
better test–retest reliability with performance measures, has led to TTS and PTS being classed as
‘objective’ measures, but the distinction is not so straightforward.

No mechanism been proposed that might produce the above subjective symptoms claimed
for VHF (12–20 kHz) and US (greater than 20 kHz) acoustic irradiation. Audiology has, for at
least four decades, established methods of objectively quantifying the adverse effects of exposure
to audio frequency sound that is too loud, or persists for too long. This is primarily through
measurement of the TTS of patients who come to them for testing, and from epidemiological
studies relating any PTS to estimates of past occupational noise exposure. Indeed, as §2b will
explain, this has played a large part in setting the guidelines for the advisable levels of exposure to
VHF/US (figure 3) to the extent that the inducement of subjective effects above the 20 kHz third-
octave band has not played a role in setting guidelines. Those guidelines show a large spread in
values (a factor of over 3 million in intensity, and a factor of more than 1000 in pressure, at 20 kHz),
even though they are based in large part on monitoring the averages of selected cohorts, rather
than reflecting the spread in response that characterizes the hearing and balance functions in
the general population. The calibrated recording in figure 1c would contravene around half of the
MPLs in figure 3, and would do so continuously without interruption. The concern arises because
in §2b it is proposed that even the guidelines in figure 3 are based on inadequate evidence, and
were for the most part drawn up for the scenario of occupational exposure of adults for limited
and monitored periods of time.

(i) What question is being asked?

Figure 3 is visually unpalatable but necessarily so. Lawton [45,46], on whose excellent
compilations of guidelines much of figure 3 is based, followed the generally accepted route of
tabulating the centre frequency of the third-octave band against the maximum permitted dB level
(which is sometimes the instantaneous level, the time-averaged (e.g. 8 h) level or unspecified).
However, figure 3 illustrates that, in doing so, that MPL stretches from the lower to the upper
frequency limit of each band (as shown in blue on the upper axis of figure 3).

Figure 3 also makes clear the step change in allowed levels that occurs across the 20 kHz band.
This follows from the criteria that levels at and below the 20 kHz band (i.e. below 22.4 kHz;
figure 3) are set to avoid subjective effects (nausea, fatigue etc.), while above 22.4 kHz they are
set to avoid the ultrasound generating hearing loss at frequencies generally used to understand
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speech (normal audiometric testing for hearing loss does not extend to frequencies higher than
8 kHz, so damage at frequencies higher than 8 kHz would not normally be detected [47]).

Finally, the agreement between authors in figure 3 is illusory (authors who tend to agree
are grouped in boxes in the legend). There are only six basic studies (Grigor’eva [13]; Acton
[15–17]; Parrack [14] with a 1969 revision from Parrack via personal communication; [3,19]). As
a result, the reviews and guidelines in figure 3 outnumber the underpinning studies by around
3:1, such that (in the words of Lawton [46]) ‘these first interim limits were taken up by national
and international bodies, and repeated with enough regularity over several decades to gain a
degree of authority and permanence, perhaps not deserved. . . It seems that Soviet, UK and
American investigators of the 1960s took a reasoned approach, recommending DRCs [Damage
Risk Criteria] and MPLs supported by limited experimental and survey data. These tentative first
recommendations were then taken up by national and international bodies, to gain authority by
repetition: the idea of ‘proposed’ or ‘tentative’ has been lost in the repetitions’. Henceforth, any
new guidelines must address the fact that

— there is a paucity of original studies, and re-issuing new guidelines based on old ones
gives the unintended impression of confirmation, validation and independent agreement
where none was intended; furthermore, transcription errors occur and through repetition
become embedded (though care was taken in appendix B, the original sources are now
over 40 years old, and some of their recommended levels are known only through citation
by others);

— these original studies dealt with occupational exposures rather than modern public
exposures (see figures 1 and 2);

— the original studies had small subject numbers, and neglected potentially sensitive
individuals and demographics, such as children (we should consider variations in
individual sensitivity of both auditory and subjective effects—numerous research teams
of adults dating from the 1940s [48] to the present day, as observed by this author, noted
that some team members reported effects such as dizziness when close to the ultrasonic
source, while others were unaffected, although controlled human experimentation in
ignorance of the exposure conditions would be required to prove that such reports are
ultrasonically induced);

— past studies addressed the duration of exposure in an uneven manner (such that many
national guidelines opt for an 8 h daily exposure, 5 days a week) and the convention of
trading-off the intensity of exposure against its duration is not well suited to the public
exposures to VHF/US seen in figures 1 and 2; and

— modern wide-ranging guidelines need to take into account who is to be protected and
monitored, and which adverse effects are to be minimized or even prevented.

Figure 3 groups ‘families’ of similar guidelines into boxes. The dominant sources are the 1975
work of Acton [16] (which produced three similar families, bracketed together in figure 3),
H. O. Parrack 1969 (personal communication) and, to a lesser extent, Grigor’eva [13]. Parrack’s
recommendations [14] have been surprisingly long-lived and influential, given that he retracted
them in 1969 (as cited in the 1982 WHO guidelines [19]). These were all based on work carried
out in the 1960s and 1970s on exposure to occupational noise in the VHF/US regimes. It has been
difficult to identify the source of the basic research on which the 1976 USAF, and the 2004 ACGIH
8 h average, guidelines are based.

The scenario in mind for the basic studies behind figure 3 would typically be work at an
ultrasonic cleaning bath, and the goal for signals above 22.4 kHz would be the avoidance of
hearing loss below 8 kHz. The context of such known exposures would be worker protection
against occupational exposure enshrined in law, subject to monitoring, with known and recorded
durations for the exposure and ‘quiet’ times for recovery. Furthermore, the worker would be made
aware of the exposure and might (within reason) be required to wear protective equipment. The
occupational source envisaged by most of those setting guidelines would be inadvertently leaking



584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

ARTICLE IN PRESS

12

rspa.royalsocietypublishing.org
Proc.R.Soc.A20150624

...............................................

ultrasound into the air (e.g., an ultrasonic cleaning bath), and so shielding it could be an option. By
contrast, people receiving VHF/US exposures in public areas, for exposures resembling figures 1
and 2 (that are not accompanied by a familiar audio frequency alert that most people can hear,
such as the hiss of an ultrasonic cleaning bath), are currently ignorant of their exposures; they
cannot reasonably be expected to wear hearing protection; they receive no monitoring of their
exposure; they might also be exposed at home (by pest scarers) or during the commute (by public
transport PAVA), and at work. Whether they respond significantly or not at all is a function of the
unknown variation in response in the population, and the as-yet unknown exposures. Moreover,
how we view a symptom depends on our knowledge of cause and effect (§4) and the extent
to which the evidence base leads to guidance of which clinicians can be aware. To take one
example, dizziness from ultrasound is classed as a subjective symptom. Dizziness from taking
a medication for which it is a known side effect would not be classed as subjective, and in that
respect would not only be a consideration in how well the medication can be tolerated and how
it affects productivity and quality of life, but would also be included in statutory assessments of
risk and health (for example, when operating machinery).

Against this uncertainty in the hazard comes uncertainty in the response: there are no records
of large numbers of complaints from the public, and this might be because only a small number
are affected, or it might be because there has been no awareness of exposure and no route by
which to complain. If significant numbers do complain, statistically there will be a proportion that
attributes adverse effects to ultrasound when ultrasound is not in fact the cause. Large numbers
will be unaffected: while their existence at all is surprising, the exposures shown in figures 1 and 2
are orders of magnitude less intense than those exploited in ultrasonic weaponry, see §3b(iii)(4).

This section will ask whether, considering today’s mass exposure of the public to tonal
VHF/US signals, the six original studies on which figure 3 is based were considering relevant
cohorts, relevant exposures and relevant adverse effects, and whether we need to reconsider the
guidelines for occupational and public exposures.

When drawing up guidelines, we are mapping the available evidence base on to a dB level,
a process that retrospectively translates the evidence base into a single question: what is the
appropriate dB level? It is vital, in doing so, that we ask ourselves how well the original research
maps onto that specific question, and avoid a mismatch because the context is not considered.

The work of Knight [49] is commonly cited, drawing upon his conclusion that ‘there is no
evidence of hazardous influence of airborne ultrasonic radiation on the acoustic or vestibular
systems’ [49]. What question was Knight [49] really asking? This author’s interpretation of it
would be ‘If a group of only 18 men with an average age of 30, who work in the ultrasonic
cleaning baths industry but for whom there is no quantification of exposure either to audio
frequency or ultrasonic signals, is compared to a group of 20 men of similar average age who
do not work in the ultrasonic cleaning bath industry, do the average (across the whole group)
Hearing Threshold Levels from 250 to 8000 Hz differ between the two groups?’ The average of
the ultrasonic workers was worse by 2–7 dB over the entire frequency range. However, Knight’s
data also show the most pronounced reduction as being a dip at 4 kHz, which usually follows
from exposure to high levels of audio frequency sound. Indeed, Knight [49] records that half
of the 18-man cohort had experienced gunfire, of which one also working with pneumatic
road drills, one with riveting noise and one (who had also received an ototoxic drug) had
worked in an aero-engine test bed. Of the remaining nine men who had not experienced
gunfire, two tested 100 W guitar amplifiers between their ultrasonic exposures. This would negate
comparisons. In common with many studies that looked for changes to hearing, Knight [49]
adds as a postscript that ‘The reported prevalence of subjective effects and stress disorders was
extremely small’.

Knight [49] compared the average hearing sensitivity of a group who worked with ultrasonic
cleaning machines, with the average hearing sensitivity of a group that did not. There is no
measurement of the exposure the first group had, no attempt to test the variability within
that group, and no reported recognition of any self-selection that subjective effects may cause
in occupational studies (a subject who routinely feels fatigue and nausea when operating a
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particular machine is less likely to continue doing so, and so be available for Knight to select).
When the excellent review by Howard et al. [34] cites Knight, it states: ‘There are no reports
of hearing loss due to ultrasound exposure [1,49], although there is a report of TTS in subjects
exposed to frequencies of 18 kHz at 150 dB for about 5 min [1]. Research has shown that
airborne ultrasound has the potential to cause nausea, fatigue, and headaches [3,7,8,20,43,50]’
[34]. The context (which as §3b will demonstrate is sometimes crucially omitted) includes the
fact that that Knight’s study [49] was not designed to address the question of whether a
minority (that would be hard to detect in population averages such as Knight [49] conducted)
will suffer the above subjective effects. It is not sufficient to say that such deficiencies would
be evident to epidemiologists and statisticians, because in 40 years no organization setting
guidelines has attempted to rectify the problems in the original data, which is used to support
assurances from manufacturers that ‘there are no studies that show any issues of long term
exposure to airborne ultrasound . . . despite many years of human exposure to existing ultrasound
sources’ [9].

Do we care if only a minority is affected? The spirit of German workplace law effectively states
that protection must be given to all workers from all possible hazards [51,52]. By contrast, in the
UK the Health and Safety at Work etc., Act 1974 qualifies the duty of employers to protect their
employees and the public, and employees to protect themselves and each other, by the principle
of ‘so far as is reasonably practicable’, explained as follows by the UK Health and Safety Executive
[53]: ‘In other words, an employer does not have to take measures to avoid or reduce the risk if
they are technically impossible or if the time, trouble or cost of the measures would be grossly
disproportionate to the risk’. This suggests a balance between risk and remedy.

If a minority of a given workforce were suffering adverse effects from airborne ultrasound,
although the above attitudes taken by German and British lawmakers seem different, in both cases
the workers would be protected, once workers and management were aware of the exposure.
Measures might include building protective casings around the sounds, donning ear protection,
limiting exposures and/or redeploying sensitive individuals to other tasks. This section has up
to now considered occupational exposures in terms of the underlying scientific studies and the
resulting guidelines. What, however, about public exposure such as was recorded in figures 1
and 2? The public and management may well be unaware of it, the ‘dosages’ of ultrasound
would be uncontrolled and unmonitored, and the option of protective measures impractical.
There are unknown numbers of sites generating ultrasound; an inadequate evidence base from
which to predict the effects; the vagaries of reporting subjective symptoms among the footfall of
millions at each site; the complexities of assessing the cost of a minority of those who commute,
attend education or seek recreation feeling subjective adverse effects. These may seem obvious
questions when seen from a public health perspective, but they are not relevant to the guidelines
of figure 3, except for one. Only the 1984 INIRC-IRPA [20] guidelines (built on a 1981 report
[54]) considered public exposure, giving a very reasoned account of the differences that must be
taken into account for public, as opposed to occupational, exposure (§2b(i)) but noting that these
were interim because of the lack of definitive data. The author has been unable to identify any
additional data, other than the occupational exposure studies that are criticized in this paper,
on which the INIRC-IRPA [20] based the ‘existing data’ of their opening remark: ‘Existing data
suggest that exposure of the general public to airborne ultrasound (one-third octave band mid
frequencies above 20 kHz) at levels up to 110 dB is not known to cause untoward health effects.
However, noting that the general population can potentially be exposed 24 h per day and for
the other considerations noted above, an added safety factor should be incorporated, at least as
an interim measure until more definite data on adverse health effects of exposure to airborne
ultrasound become available. Thus an SPL of 100 dB is recommended. For similar reasons, an
added safety factor should be incorporated into the exposure limit for frequencies in the range of
the one-third octave band centred on 20 kHz. An SPL of 70 dB is recommended’.

This interim 70 dB limit is the only suggestion we have to cover the mass public exposures of
figures 1 and 2, and it is based on a small number of occupational exposure studies primarily of
the average response of small cohorts of adult males.



690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

ARTICLE IN PRESS

14

rspa.royalsocietypublishing.org
Proc.R.Soc.A20150624

...............................................

0

20

40

60

80

100

120
median

5th percentile

0

20

40

60

80

100

120
he

ar
in

g 
th

re
sh

ol
d 

SP
L

 (
dB

)
(a) at 20 kHz (b) at 16 kHz

age range of cohort age range of cohort

5–
19

 y
ea

rs

20
–2

9 
ye

ar
s

30
–3

9 
ye

ar
s

40
–4

9 
ye

ar
s

50
–5

9 
ye

ar
s

60
–6

9 
ye

ar
s

70
–9

0 
ye

ar
s

5–
19

 y
ea

rs

20
–2

9 
ye

ar
s

30
–3

9 
ye

ar
s

40
–4

9 
ye

ar
s

50
–5

9 
ye

ar
s

60
–6

9 
ye

ar
s

70
–9

0 
ye

ar
s

Figure 4. The hearing threshold (pure tone audiometry) as a function of age, showing median and 5th percentile. Data taken
from Rodríguez Valiente et al. [10], who used a total dataset of 645 people. Data at 0 dB and 120 dB re 20µPa have been
influenced by the threshold and saturation limits of the instrumentation and so contribute less reliably to the statistics. The
vertical arrows indicate thedifference between themedian in the 30–39 agegroup, and the 5thpercentile in the 5–19 agegroup.

(ii) The use of averages

It is commonly accepted that arithmetic averaging of data is a sensible route to reliable
conclusions, but this section contests this for the mass exposure of the public to ultrasound in
air. As emphasized in the previous subsection, Knight [49] (in common with all the studies on
which the guidelines of figure 3 are based) worked with averages, primarily for occupational
exposures, and was therefore insensitive to the variation that occurs within the population.
Therefore, they did not detect population variation, in particular whether specific demographics
(such as children) vary significantly from the average. As long ago as 1972, Johnsson & Hawkins
[55] suggested that the high frequency sensitivity of children arises because the concentration of
hair cells in the basilar portion of the cochlea is high in newborns, and subsequently reduces.
This sensitivity had been observed for some time [56–58] but there were no standard methods of
testing [44,59]. Figure 4a shows the evidence behind the earlier statement that 5% of the people
tested by Rodríguez Valiente et al. [10] who were between the ages of 40 and 49 years old, had
hearing at 20 kHz that was at least 20 dB more sensitive than the median for the 30–39 year
olds tested (a typical age for subjects on which a considerable portion of figure 3 is based). At
20 kHz, 5% of the 5–19 year age group had a threshold 60 dB more sensitive than the median
for the 30–39 year age group. Because the dB scale is logarithmic, these 20 and 60 dB differences
correspond to factors of 100 and 1 000 000 in intensity (equivalent to factors of 10 and 1000 in
pressure for plane and spherical progressive waves).

Filipo et al. [60] compared the average hearing threshold of a group of 25 children aged 7–10,
with the average of a group of 20 people aged 17–20, using pure tone audiometry via headphones
at 8, 10, 12.5, 16 and 20 kHz. They found the average threshold at 20 kHz of the younger group was
20 dB more sensitive than that of the older group. Burén et al. [61] conducted pure tone audiometry
on three groups, having median ages 11, 14 and 19 (to the nearest six months, the respective cohort
size being 172, 94 and 69). At 20 kHz, the average threshold of the youngest group was 10 dB more
sensitive than that of the oldest group. Although the raw data are not available, it would appear
that the most-sensitive individuals in the youngest group have thresholds at 20 kHz that were
55 dB better than the average threshold for the older group. As a word of caution, Herbertz [62]
does show the raw scatter in the data, and although he does make conclusions on trends, the
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scatter is significant: in audiometric ultrasonic studies, it might be useful to show scatter and
provide raw data as a matter of course.

In audiology, standard pure tone audiometry measures hearing thresholds from 0.125 to 8 kHz,
and does not as a matter of routine measure frequencies about 8 kHz (which are known as
‘extended high frequencies’, EHFs). The international standard [63] for the EHF range covers
only from 8 to 16 kHz, and furthermore, only includes data from subjects aged 18–25. If, during
childhood, the hearing acuity to VHF/US decreases rapidly with age, care must be taken when
applying averaging and developing standards for the VHF/US regime.

Having therefore questioned what demographic is sampled using a cohort of what size, and
having obtained access to the raw data with its scatter, what is to be done with it? Certainly,
its statistical significance should be tested. There is no escaping the attraction of presenting the
average, but which average? Even if one decides on using the mean, which mean should be used?
At a practical level, how appropriate for predicting the threshold for subjective effects, is a system
that averages decibels of hearing thresholds of TTS or PTS? Because the decibel is a logarithmic
representation, then consider three individuals with hearing thresholds of 60, 70 and 80 dB re
20 µPa. These decibel levels correspond to hearing thresholds in pressure of 20, 63.2 and 200 mPa,
giving a mean RMS acoustic pressure of 94.4 mPa (73.5 dB re 20 µPa), not 70 dB—and error bars
that are not symmetrical about the mean when plotted on a dB scale. Simply taking the mean of
the raw dB numbers tends to increase the permissible levels over and above the arithmetic mean
of the acoustic pressures because it takes a geometric mean. Note that the mean of the intensities
represented by 60, 70 and 80 dB re 10−12 W m−2 (1, 10 and 100 µW m−2) is 37 µW m−2, i.e. 75 dB
re 10−12 W m−2. Without an established record of human responses to ultrasound in air (taking
into account deviations from the average) and without a mechanism for producing these effects,
the only basis for this approach for either hearing loss or subjective effects from ultrasound in air
is an extrapolation from the practice that has served at audio frequencies [64], of averaging dBs
because it is more closely aligned to audio frequency hearing than a linear representation would
be. Extrapolation of this approach to predict the subjective effects produced by ultrasound in air
has yet to be validated.

(iii) The range seen in the guidelines

One immediate question to address is why, if the guidelines are based on the same small number
of basic studies, there is such a spread in allowable limits (7 orders of magnitude in intensity,
and a factor of more than 3000 in pressure, at 20 kHz). The most generous guidelines in figure 3
can, in the opinion of this author, be immediately criticized. Ultrasonic manufacturing (of pest
deterrents, cleaning baths etc.) grew significantly in the 1980s: for example, between 1980 and
1983, production of ultrasonic pest control devices in the US increased approximately 80-fold
[65]. The manufacturers sought high intensities, to generate an effective deterrent. On addressing
safety concerns in the postscript to their protocol for deploying ultrasonic pest deterrents, in
1989 proponents of the devices stated ‘OSHA standards require ear protection or exposure
limitation for continuous sound pressures above 120 dB. Commercial ultrasonic units fall below
this threshold; most units do not operate continuously, and sound pressures (except very close
to the transducers) are less than 120 dB. Some workers, especially younger females, may be
annoyed by the ultrasound field’ [66] (noting that these stated dB levels are re 20 µPa RMS).
Recent measurements in a Tokyo restaurant detected 120 dB re 20 µPa SPL directly under a pest
deterrent source, and 90 dB re 20 µPa SPL some 15 m from it, and noted strong adverse reactions
from some, §3b(i)(1).

Having in this way been used to justify high exposures in the past, in 2004 US Occupational
Health and Safety Administration (OSHA) voted to adopt the recommendations from The
American Conference of Governmental Industrial Hygienists (ACGIH) [23] to increase the
allowable limits by 30 dB ‘when there is no possibility that the ultrasound can couple with
the body by touching water or some other medium’. This rationale permitted manufacturers
and users to deploy devices that exposed humans to 1000 times the intensity levels that other
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guidelines considered to be the maximum permissible. Furthermore, the ACGIH [23] confined
itself to avoiding only one specific adverse effect ‘These recommended limits (set at the middle
frequencies of the one-third octave bands from 10 kHz to 50 kHz) are designed to prevent possible
hearing loss caused by the subharmonics of the set frequencies rather than the ultrasonic sound
itself’. That is to say, the only hazard that was to be avoided was one where the energy in
subharmonics caused hearing loss: no other criteria were deemed relevant. Any potential for the
primary ultrasonic frequency (e.g. the peak at 20.8 kHz in figure 1c) to cause hearing impairment
other than through audio frequency subharmonics is ignored. Despite extensive criticisms from
the international community [34], the latest version of the OSHA manual [50] still supports all
these stances except that the 30 dB statement is not explicit, though given previous editions users
could readily implicitly apply it given that it still states ‘ACGIH set the ceiling values assuming
that the worker has no direct contact with the ultrasound source, but that the worker does
have contact with water or other media that can transfer the sound waves’. The 2012 ACGIH
document [67] repeats the above permission to allow for a 30 dB increase if the transmission path
is airborne, and also states that all (measurement) instrumentation should meet the specifications
of an standard that allows for sound level meters in general usage to underestimate the measured
20 kHz to an unlimited degree and still meet the standard (see §3a).

Consider the railway station of figure 1b,c. The 30 000 000 who pass through it each year are
not covered by the above OSHA guidelines, as it explicitly protects only workers. If 5% of the
workers on 8 h shifts are impaired by headaches, migraine, nausea, fatigue, tinnitus or dizziness,
would that effect on their work and lives not be considered at all if we were to adopt the OSHA
guidelines? The answer is that it would be in part, if the exposure is at 10–20 kHz, because of the
following phrase from OSHA and ACGIH, repeated from the start to their latest editions [50]:
‘Subjective annoyance and discomfort may occur in some individuals at levels between 75 and
105 dB for the frequencies from 10 kHz to 20 kHz, especially if they are tonal in nature. Hearing
protection or engineering controls may be needed to prevent subjective effects’ (noting that these
stated dB levels are re 20 µPa RMS). On reviewing this, Lenhardt [68] recommends his earplug
design [69] and notes that goggles may be required if theories that the eye is a route by which
ultrasound activates the auditory system are proved [70].

The exposures of figures 1 and 2 are indeed tonal. Engineering controls (shielding) will
be practicable for some workers, but not if the objective of the device is to emit sound into
the public space (§3b), as appears to the case for the sources of figures 1 and 2. For these
hearing protection might be worn (if proved to be adequate for VHF/US), but if the assessment
of need comes from guidelines that follow from the current evidence base with its data
predominantly the averages of adult males, then it is not aligned with German occupational
law that states ‘Risks are to be controlled at source; . . . individual protection measures are
subordinate to other measures . . . pspecial dangers for vulnerable groups of workers are to be
taken into account’ (translated from Bundesministerium der Justiz und für Verbraucherschutz,
1982) [51].

Having looked in detail at the guidelines which are most permissive above the 20 kHz third-
octave bands, consider now the third-octave band centred at 20 kHz, where the exposures of
figures 1 and 2 occur. In this band in figure 3, the OSHA guidelines [50] are not the most
permissive. In 1966, Parrack [14] suggested a 140 dB re 20 µPa maximum permissible limit in
octave and third-octave bands, though Parrack retracted this in 1969 [3,19], reducing overall
(and making the 20 kHz limit 105 dB re 20 µPa). Nevertheless, Parrack’s original 140 dB re 20 µPa
limit has persisted with many reviewers and authorities, from Crabtree & Forshaw [4] in 1977
to Altmann [71] in 2010, who stated that ‘High audio frequencies (above 10 kHz) produce less
threshold shift [than do lower frequencies], and at ultrasound the ear is essentially untouched
if levels are below 140 dB. In these frequency ranges heating of air cavities, of textiles or hair
may become important above about 160 dB’ (dB levels re 20 µPa). The extreme heating of hairs at
around 160 dB re 20 µPa follows from original experiments with mice [72–74].

Acton [16], in turn, revised his 1968 limit of 110 dB re 20 µPa, reducing it to 75 dB re 20 µPa
for the third-octave band centred around 20 kHz, as its frequency range extended from 22.5 kHz
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down to 17.6 kHz, i.e. to within the audio frequency range (and certainly audible to many young
females [75]). In addition, criteria for narrowband emissions were introduced [16,76].

For the most part, the subsequent guidelines do not address questions that should be key, such
as the lack of dose–response relationships. Lawton [45] summarizes the issue of the duration
of the exposure as follows: ‘None of the recommended limits have a fully developed Exposure
Level, combining noise level and duration on a daily basis. Where duration is considered at all,
there is an equal-energy trading relationship: halving of noise duration allows a 3 dB increase in
level. However, the recommended limits have two stated aims: to avoid subjective effects and to
avoid hearing damage. In sensitive individuals, adverse subjective effects might be expected to
appear shortly after the start of a very high frequency noise exposure. An increase of permitted
band level, in line with any duration correction, would hasten the onset of subjective effects
in sensitive individuals, and probably involve a larger proportion of the exposed population.
Both of these outcomes are undesirable: a relaxation of maximum acceptable level, to account for
reduced daily duration, works to thwart one stated aim of any recommended limit.’ Four years
later, Howard et al. [34] noted that the 1984 INIRC-IRPA [20] guidelines ‘allow for an increase in
the exposure limits if the exposure duration is less than 4 h per day; however, Health Canada [22]
does not support this recommendation and it should be noted that the IRPA recommended limits
for continuous exposure for airborne ultrasound to the public are lower than [the INIRC-IRPA
[20] 1984 limits for occupational exposure]’. The 1984 INIRC-IRPA [20] guidelines built on earlier
ones from 1981 [54] and make cogent points on the extra considerations public exposure requires
over and above occupational exposure, including the often neglected issue of the duration of the
exposure and opportunity for people to undertake ‘recovery times’ without exposure. They state
that: ‘Exposure may occur for up to 24 h per day; There is no medical surveillance as is possible
for a controlled occupational group; It would be undesirable to require hearing protectors or
other protective devices to keep levels at the ears within the limits; Noise-related effects such
as annoyance, stress etc. must be considered in addition to other possible auditory effects; The
general public is a population containing a broad range of sensitivities to insult from physical
agents’.

This range of guidelines is critically assessed by several authors [28,35–46,77,78]. The standard
method for estimating noise induced hearing loss [79] does take into account the duration of
exposure, but it is only relevant to noise at frequencies less than 10 kHz and for SPLs exceeding
140 dB re 20 µPa, it is an extrapolation. Given that workers in public places (as in figures 1 and 2)
might feel adverse effects without identifying the source, the examination of the effects of long-
duration exposure should be addressed [5].

Perhaps, of greatest concern is that the above discussion of the range seen in the guidelines,
and how they relate to the exposed people, can currently only be made of occupational exposure,
as there is only one interim recommendation for public exposure.

(iv) Are current guidelines adequate?

This paper argues that figure 3, and the current understanding of the adverse effects of ultrasound
in air, are grounded on, and provide for, an insufficient scientific basis to control human exposure
to VHF sound and ultrasound. Furthermore, new guidelines should not merely select maximum
permitted levels in each frequency band from previous reviews, without stating the precise
criteria for that selection—the author believes this cannot adequately be done, because

— Most of the papers cited in figure 3 are reviews of the original work, and that work
was not suitable for mass public exposure. New guidelines must not simply select
levels from past guidelines. They require directed research specific for today’s guidelines,
considering appropriate adverse effects, exposure duration, and cohorts (both in size and
demographic, tuned to quantify the more sensitive outliers, with research to investigate
the possible implications of the presence of children, workers exposed in ignorance, and
the additional exposure outside of the workplace).
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— Subjective effects (including migraine, nausea, fatigue, headache and dizziness), and
the public health/economic/social question of how these affect safety and performance
particularly when exposure is continuous (in the home, workplace, school, hospital
etc.), must not be ignored in setting guidelines. Recalling the opening paragraph of
§2b, measurement of hearing thresholds, and TTS and PTS appear to be ‘objective’, and
therefore, attractive and more readily quantifiable than ‘subjective’ effects. However, the
amplitudes demonstrated in figures 1 and 2 are less likely to produce TTS than they are
to produce subjective effects.

— Past guidelines were based on studies that attempted to identify differences in average
values (e.g. in the hearing thresholds) between groups (e.g. those who worked
with equipment thought to produce ultrasound in air—usually without quantifying
exposures—and those who do not). The guidelines were overwhelmingly influenced by
studies on adult men. The response of the ear (which serves hearing and balance, and
provides input into other procedures such as swallowing) varies very greatly between
individuals, such that the concept of an ‘average’ becomes difficult. This is particularly
so when considering frequency issues, because we generally lose sensitivity to high
frequencies with increasing age, so that the application of guidelines based on data
from 30-year old males to school children or infants is questionable. If, as a Gedanken
experiment, each agency had taken into account the 5% most-sensitive 5–19 year olds
in figure 4a by adjusting the maximum permissible SPLs in accordance with the hearing
sensitivity of the demographic, then they would reduce the levels in the 20 kHz band
down by 60 dB. If this were valid, even the quietest signal in figures 1 and 2 (the museum)
would exceed all modern guidelines by a significant margin.

— The above 60 dB adjustment is interesting but open to challenge. Without a validated
mechanism for the production of subjective effects, it is not possible to assess the
questionable validity of the assumption that the potential for adverse effects has been
linked to hearing acuity or sensitivity. The received wisdom that ‘if you cannot hear
a sound it cannot cause an adverse effect’ continues to be supported by agencies,
the current OSHA (2015) guidelines stating that: ‘Research indicates that ultrasonic
noise has little effect on general health unless there is direct body contact with a
radiating ultrasonic source. Reported cases of headache and nausea associated with
airborne ultrasonic exposures appear to have been caused by high levels of audible
noise from source subharmonics. The American Conference of Governmental Industrial
Hygienists (ACGIH [22]) has established permissible ultrasound exposure levels. These
recommended limits (set at the middle frequencies of the one-third-octave bands
from 10 kHz to 100 kHz) are designed to prevent possible hearing loss caused by the
subharmonics of the set frequencies, rather than the ultrasound itself. These exposure
levels represent conditions under which it is believed that nearly all workers may be
repeatedly exposed without adverse effects on their ability to hear and understand
normal speech’ [50]. Transposition of hearing thresholds, TTS and other measurements
to cover all adverse effects is not justified on current research.

— The current mass exposure of human populations is to tones such as those shown in
figures 1 and 2, whereas the guidelines are almost all stated in terms of the SPL averaged
over bands of one-third of an octave, or even greater. This perhaps reflects the fact
that those considering the exposure followed procedures developed for exposure to
broadband noise at audio frequencies, not exposure to the intense tones. Section 2b(i)
noted that if guidelines are expressed as a single number for each third-octave band,
they cannot distinguish between the data and the horizontal dotted lines in figures 1c
and 2b,d. The measured signal, if audible, would be akin to a piercing whistle, while
the dotted horizontal line, if audible, would sound akin to a ‘shhh’ (36.6 dB less in
terms of the peak SPL in the narrowband range of the measured signal). We have no
empirical evidence and no mechanism for the generation of adverse effects that allows us
to state that the two will generate the same adverse effects. The standard for estimating
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noise induced hearing loss at audio frequencies simply uses the A-weighted acoustic
energy (Pa2 s) averaged over the number of years of exposure regardless of whether
this is a pure tone, narrowband noise, or broadband noise [80] even though, at audio
frequencies, as stimulus levels for a pure tone increase, there are nonlinear effects in the
cochlea which mean that the area of the basilar membrane receiving the acoustic energy
broadens. Across the spectrum of effects (objective, subjective and psychological) that
have been claimed to result from ultrasonic exposure (these include proved, disproved
and uncertain), it would be difficult to extrapolate from guidelines designed from one sort
of exposure (e.g., broadband occupational exposure to a specific ultrasonic tool for limited
duration) to the long-term tonal exposure of figures 1 and 2, even were the mechanism
for the development of adverse effects established (which it is not).

Failure to recognize these flaws (in the scientific basis for applying past research to current
exposures) has led to widespread dismissal among the scientific and medical communities of
the claims by the public of adverse effects by VHF sound and ultrasound in air. The temptation
has been to extrapolate to the whole current population the almost certainty that the original
widespread claims of ‘ultrasonic sickness’ were false (§3b(i)), and reports suggesting mis-
attribution in some members of the public for infrasonic exposure [81]. This paper does not
set out to prove adverse effects, but rather to achieve the objectives outlined in the Executive
summary section.

3. Exposures

(a) The current scenario: difficult measurements are not keeping pace with burgeoning
deployments

There has been a massive increase in deployment of devices that operate by placing ultrasonic
fields in air (in residential, recreational and occupational places). Those exposed (and in the case
of workers, their employers) are often in ignorance of the exposure, and there is no monitoring
of levels, and of off-times and the duration of respite periods in and out of work. The advent of
emitters such as those measured in figures 1 and 2 open up the prospect of the citizen scientist
undertaking personal monitoring and exploration (appendix A).

These exposures contrast to those considered in developing most guidelines, where
occupational sources (like cleaning baths) place ultrasound in air only through unintended
leakage, and against which screens or hearing protection can be considered as viable mitigation
given the limited periods to which cognizant humans are exposed to them (which cannot be
considered reasonable if exposure is not occupational).

The number and type of sources is increasing year on year, but the information detailing
their types and locations are not publicly advertised, and there is no statutory requirement
to do so. While ultrasonic pest deterrents have been in use, even domestically, for well over
20 years, in recent years inexpensive technology has allowed a proliferation of devices that project
VHF/US into air. In part, this is because the manufacture of ultrasonic sources involves hazardous
materials. This has in the past contributed to high shelf prices where health and safety practices
challenge the manufacturer, but now manufacturers from regions without such regulations are
able to market devices at one-tenth the price. This has resulted in the increased deployment of
ultrasonic deterrents for pests. Some residents, on behalf of themselves and their children, have
claimed that ultrasonic projectors (placed by themselves, landlords, neighbours etc.) cause them
distress in their homes, gardens, workplaces and transport routes, see §3b(i)(1). Of course, such
claims might be spurious, but it is not ethical to persist with possible detrimental exposures on the
basis that no claims could be proved because no measurements have been made. Some devices
that project ultrasound in air are useful, and in the long-term industry would benefit by knowing
what usage is safe. Some manufacturers of ultrasonic pest deterrents are in the invidious position
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of believing they are compliant with guidelines but include in their instruction manuals warnings
of subjective adverse reactions [82] and even damage to the ears [83]. Others offer advice on
resolving complaints from neighbours [84] (which is not applicable if a neighbouring infant or
pet, or their carer, is unable to identify the ultrasonic source as the problem). For other devices
(e.g. automatic door opening systems), there are alternatives (e.g. infrared sensors) for which the
safety guidelines are not so questionable.

The measurement of device outputs and VHF/US fields in situ is currently inadequate to
provide, and compare against, guidelines that are relevant to today’s exposures. Although dB
scales are provided by the manufacturers or distributers of the phone/software, recordings such
as that shown in figure 1a do not currently have a traceable calibration, so that signal level
cannot be known. Sound level meters are not so simple that they can produce dB levels that
are guaranteed fit for purpose for whatever use the operator wishes to make of them, when
measuring a VHF/US signal of any type (tonal, broadband etc.). Many studies (e.g. [85]) specify
the use of sound level meters in measuring VHF/US fields, and yet the performance of these
meters and their microphones in this regime are often poorly specified. The relevant standard
[86] states that a Class 1 sound level meter should record frequencies up to and including the
16 kHz third-octave band, but that 12.5 kHz is the minimum frequency to which the frequency
characteristics should be specified. While the performance acceptance limits in this standard [86]
at 1 kHz are ±1 dB, at 20 kHz they are from +3 dB to −∞ dB for a Class 1 device, meaning that
it could be capable of severely underestimating signal amplitudes at 20 kHz signals and still
meet acceptance by the standard. This standard [86] cross references to an older standard [87]
which states

The noise which is usually of interest with ultrasonic equipment arises from audible
sounds produced by the ultrasonic process, for example, the cavitation noise which is
audible in ultrasonic cleaners. To achieve reproducible measurements of the audible sound
with existing sound level meters which comply with IEC 651, the practice is to use the
A-weighting response in conjunction with a low-pass filter which has a very sharp cut-off
above 20 000 Hz. The purpose of this standard is to specify the characteristics of such a low-
pass filter. When the filter characteristic is used with the sound level meter A-weighting
specified in IEC 651, the resulting nominal values of the overall frequency response fall
within the scope of Type 1 tolerances. Where the measurement of the ultrasonic component
frequencies is required, the practice is to measure the unweighted sound pressure level
using a microphone system which is known to have a frequency response extending
sufficiently, for example, to at least the operating frequency of the ultrasonic equipment.
A narrow band or one-third octave band filter is usually included in the measuring chain.
However, this standard is not concerned with the measurement of such components, nor
with any possible hazard from them.

The use of A-weighting, a filter based on average human hearing that is a common option with
sound level meters, is of course wholly inappropriate for assessing health risk due to airborne
ultrasonic frequencies, especially so with sensitive individuals or demographics.

The tolerance of −∞ dB at 20 kHz is common across several standards (which have tolerances
for overestimation of +3 dB and +5 dB for Class 1 and Class 2 devices) [86,88], although the older
1997 version [88] specified tighter tolerances for the Class 0 devices at 20 kHz, from +2 dB to
−3 dB. Class 0 was generally considered to be a laboratory standard and beyond the requirements
for general measurement instruments. Since then, the old four-class system (Classes 0–3) has been
replaced by a two-class system (Classes 1 and 2), and this older standard [88] is now considered
obsolete and replaced by the newer one in Europe and the USA [86], which allows the −∞ dB
tolerance at 20 kHz.

Although microphones with ultrasonic sensitivity are now commercially available, the smaller
wavelengths associated with these higher frequencies are much more strongly scattered than
the 250–8000 Hz signals typically used in hearing tests. At ultrasonic frequencies, the shape
of the ear, head and microphone mounting can strongly influence the field they are detecting.
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Figure 5. This polar plot describes the directivity of half-inch laboratory standardmicrophones (LS2). Four curves are shown, for
stated frequencies that are at the centre of the third-octave band over which the measurement was made (at 1 degree angular
resolution) in the free-field chamber of the NPL in Teddington. The 1 kHz plot is almost circular, indicating that if the same source
is placed the same distance in front of (0◦), behind (180◦) or to left (270◦) or right (90◦) of the microphone, the microphone
would output almost identical voltages. However, as the frequency increases, the curve increasingly departs from circular. The
front/back (i.e. 0◦/180◦) discrepancy increases to over 4 dB at 10 kHz, to nearly 9 dB at 16 kHz and around 10 dB at 20 kHz. This
implies that slight misalignment of this microphone could cause increasing measurement errors as the frequency increases.

A free-field audiometric or sound field measurement at 2000 Hz is robust to exact positioning of
the microphone or head, because the wavelength in dry air at 20◦C at 2000 Hz is around 17 cm, 10
times the wavelength at 20 kHz. However, a given microphone tends to become more directional
as the frequency increases (figure 5), so that the measured SPL can change significantly if the
microphone is angled slightly different to the sound source.

The greater directionality that is observed as the ratio of the sensor size to wavelength increases
has been usefully exploited for decades, e.g. with microphones lined up in arrays (effectively
making a larger detector) commonly being used to improve the ability to determine the direction
of a source (for example, in the use of microphone arrays to produce acoustic cameras for the
automotive industry, and throughout the Cold War in submarine tracking). One might, therefore,
suppose that even a single human ear will be better at determining the direction to a high
frequency sound source than a low frequency one (in what is termed monaural localization:
a second ear will introduce other factors that will not be considered here). However, this
simple prediction ignores a second effect, which is the extent to which the measurement device
disturbs the acoustic field (see appendix A for comments on how this complicates microphone
measurements as the frequency increases).

Figure 6 shows how this simple extrapolation from a physical principle (that the human ear
should be better at locating high frequency sources than low frequency ones) is complicated by
human anatomy. At the lowest frequency plotted (200 Hz), the pinna distinctly ensures that the
scattered component of the sound field from a source placed behind the ear (figure 6a) is stronger
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Figure6. The real part of the scattered pressure (in Pascal) fromapoint source placed 1 m from the opening of the ear canal, and
in the same horizontal plane as it (calculated using boundary elementmethod optimized for high performance computing after
themanner of Grace et al. [89]). (a–d)When the source is directly behind the ear, (e–h)when the source is directly in front of the
ear, (i–l) when the source is angled 15◦ outwards, away from the front position. The columns from left to right are for increasing
source frequency: 200 Hz (a,e); 2 kHz (b,f ); 20 kHz (c,g); 30 kHz (d,h). The point source has a volume velocity amplitude of
1 m3 s−1 for all plots, and this causes the acoustic pressure naturally to increase with frequency (because there is a scaling factor
between them that is proportional to frequency). For simplicity the flesh is assumed to be acoustically rigid. The geometry of the
pinna was adapted from Kahana & Nelson [90] with an added ear canal depth of 2.5 cm. The ear canal in this model is straight
so that the eardrum is visible in every image at the base of the ear canal. Human ear canals contain a bend, although in some
individuals this is less pronounced than in others.

than if the same source is directly in front of the ear (figure 6e), even though the wavelength is
approximately 1.7 m, far larger than the pinna (recall that the total pressure field is a combination
of this scattered field and the incident field, so that sounds from in front do appear louder at this
frequency). Furthermore, the pressure for a given configuration is relatively uniform across the
pinna, indicating that the measurement will be robust against slight relative motions of source
and ear. The same is true at 2 kHz (figure 6b,f ), when the wavelength is approximately 17 cm.
However, at 20 kHz (when the wavelength is approx. 1.7 cm) there is no clear distinction between
the source at the front (figure 6g) and at the back (figure 6c), and the sound field in the pinna is
inhomogeneous, indicating that the robustness of the sensor has deteriorated. This is confirmed
by comparing the middle and lower rows: a small (15◦) change in the position of the sensor
produces only small changes in the real part of the scattered fields at low frequencies (cf. figure 6e
with i and f and j), but at the higher frequencies small relative motion between the source and
ear produce complicated changes in the scattered field, and particularly the level at the eardrum
(cf. figure 6g with k and h and l). Figure 6 plots the scattered field, and not only will its amplitude
change rapidly across the pinna, but so will its phase, and therefore, the total pressure field it
produces when combined with the incident field. The amplitude of the total field on the pinna
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will therefore be sensitive to relative motion between the head and sound source, and indeed
to the characteristics of the signal. As a practical consequence, audiometric testing with tones,
warble tones and narrowband signals at high frequencies may produce unexpectedly different
results; and the question of comparing like with like might involve even more than the issue of
using the same energy or same peak amplitude that was discussed in §2a.

The application of simple physics to a single ear, therefore, reveals a far more complex
pattern of results where, counterintuitively, humans who can detect frequencies as high as
20 kHz may find it more difficult to determine the direction to the source, even though basic
physics tells us that directionality will improve with decreasing wavelength in this range. It
is perhaps not surprising that there exists such a range of pinna shapes in the mammalian
world.

Of course when locating sound sources, use is made of the pressure, phase and arrival time at
both ears, but the object of the discussion around figure 6 [89,90] is to illustrate that intuition based
on sound physics can be misleading as one extrapolates from standard audiology to the VHF/US
ranges. Those conducting measurements of sound fields in the environment must therefore
be aware of the influence of the pinna and head, and preferably test with microphones in a
mannequin as well as free-field; and those who conduct audiometric testing must appreciate that
techniques and instrumentation that are adequate for the 0.2–8 kHz regime normally tested will
need re-examining for the VHF/US regimes. Small wavelengths are not of themselves a problem:
indeed we exploit the ability they give us to focus waves and form shadows in optics, because we
are familiar with these processes, and never expect the short wavelengths of visible light to bend
around corners as the long wavelengths of radio waves do. However, our experience of hearing
and audiometry is in the relatively long-wavelength regime for sound, and our procedures and
intuition are ill suited to the short wavelengths of ultrasound in air, such that the casual user can
make incorrect assumptions.

The complications illustrated above for receivers have their counterparts with VHF/US
sources. Although ultrasonic projectors are widespread with advertised output levels, it is highly
unlikely that these can be reliably traced to international standards because traceable standards
are only just emerging. At higher frequencies sources tend to be more directional, and scatter by
the room and objects in it can produce small-scale spatial variation of the sound field. As a result,
small discrepancies in positioning microphones, and details of the stands that mount them, can
lead to significant changes in the measurement.

(b) Categories of exposure
Leighton [91] defined three categories of exposure of humans to ultrasound in air. Category
1 is labelled Ultrasonic noise exposure. This occurs when some process or device (e.g. a jet
engine) generates ultrasound as a by-product of its operation. Category 2 is labelled Unintended
ultrasonic exposure. This occurs when some process (such as an ultrasonic cleaning bath) requires
the generation of a specific ultrasonic signal as key to completing its task, but in addition
to insonifying its inanimate target, it also unintentionally exposes a human or animal to
ultrasound. Category 3 is labelled Deliberate ultrasonic exposure. This occurs when devices (such
as pest deterrents) are designed to expose humans and/or animals to ultrasound in air in
order to elicit some subjective response (whether or not the target is the intended species or
demographic).

(i) Ultrasonic noise exposure

‘Ultrasonic noise exposure first became an issue in the 1940s, when ‘ultrasonic sickness’ was
thought by many (probably erroneously [45]) to be caused by the advent of the jet engine
[14,92–94]. ‘Ultrasonic sickness’ was claimed to be responsible for earache, headache, irritability,
excessive fatigue and feelings of fear [95–97]. In 1948, the Ultrasonics Panel (formed only one year
previously) of the US Aeronautical Board reported on the first legal case for injury by ultrasound
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[92,98]. In a study considering ultrasound from jet engines, dental drills and cleaning baths,
Parrack [94] concluded that ‘Ultrasonic sickness, as described around 1948–1952, appears to be
largely of psychosomatic origin and engendered by the apprehension and/or fear growing out of
speculative publicity about the effects of air-borne ultrasound’. This is one of several quotes by
Parrack that was used in a 1967 article by a member of American Sterilizer Company [99], which
concluded that there was no evidence to support a call in the same journal (Canadian Hospital)
for protective measures when using ultrasonic equipment in hospitals. In the same year, Acton &
Carson [1] stated that subjective adverse reactions did not occur unless the subject was sensitive to
sound up to at least 17 kHz, and the SPL in the 17 kHz band exceeded 78 dB re 20 µPa, women and
younger individuals being more prone to suffer adverse effects (in the absence of a mechanism,
the hypothesis being that this is because of greater high-frequency acuity). Given the preceding
sentence, it is at this point germane to comment that the lack of clear mechanism for adverse
reaction in the time of Acton & Carson [1] and which is still the case today, means that we should
avoid an automatic association between hearing sensitivity and the potential for adverse effects,
unless this is proved. This is discussed further in §4.

It has been (and still is) often the response to the accelerated development of a new technology
that the popular press and the public between them to ratchet up concerns. In the 1950s, this
led to stories of an ‘ultrasonic death ray’ [100]. The existence of bizarre extrapolations from an
excitable press and anxious public is in itself potentially harmful, as it can cause more moderate
judges to dismiss all such claims, and produce anxiety-based symptoms in some. There were
enough scientific reports to allow the popular press to extrapolate. Allen et al. [101] had observed
some lethal effects from intense ultrasonic exposures in air of mice and cockroaches (recall that
the frequency sensitivity varies between species as well as individuals), and transitory dizziness
and feelings of heating in humans. Fatigue, headaches and nausea were reported by several
sources [98]. In a 1966 review, Gorskhkov et al. [102] claimed to observe the death of 28 of
80 volunteers who were exposed to intense-sustained jet noise in Spain, the remainder being
permanently debilitated.

Of course, the generation of ultrasound through use of a jet engine undeniably generated levels
of audio frequency sound that few had ever experienced before, so intense that unprotected
exposure close-up quickly led to permanent hearing loss. Indeed, the nature of other sources
of ‘Ultrasonic noise exposure was that the exposure was almost always accompanied by audio
frequency noise which has two consequences. First, it might fortuitously have led to the use
of hearing protection: in general, the effectiveness of such protection increases with frequency,
and even if deployed against audio frequency noise, it might defend well against ultrasound
in air. The US Navy conducted specific ‘experiments at its Aero Medical Equipment Laboratory
at Philadelphia which left Navy men being tested unharmed. The men were protected against
noise by a helmet or springband headphones, double kapok-filled “ear doughnuts” and cotton
ear plugs. Some of the men lost weight and seven said they were more tired than ordinarily,
but the Navy concluded that “although high-frequency sound does damage some animal
tissues, ill effects upon human tissues appear unlikely unless the frequency is extremely high”’
([103]; the author cannot find the evidence for these conclusions beyond what is stated in
this quote).

Second, adverse effects from ultrasound would need to be separated out from adverse
effects of intense audio frequency sound. This turned out to be important, because in 1953 a
research study attributed the symptoms of ‘ultrasonic sickness’ to high levels of audio frequency
sound [104].

Health Canada [22] and the Health Protection Agency [105] lists numerous sources of
ultrasonic noise in the industrial workplace, based in part on the work of Michael [100] and Shoh
[106], and more recent studies add to the body of knowledge on device outputs [107]. The EU
EARS project recently reported ‘Traceable measurement of airborne ultrasound output of devices
is now possible for the first time, using a newly developed measurement set-up and measurement
methods for the characterisation of typical sources. Sound pressure levels with peak values up to
147 dB were detected from commercially available devices’ [26] (dB levels are re 20 µPa).
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(ii) Unintended ultrasonic exposure

Probably, the earliest widespread example of Unintended ultrasonic exposure came from the
ultrasonic cleaning bath, which deliberately generates ultrasound to clean but does not intend
or require that ultrasound to impinge upon humans or animals for it to operate. Its operation
is usually accompanied by a hissing audio-frequency sound associated with cavitation [11,108],
the effects of which would have to be separated out from those of the ultrasound, and any
subharmonics of the ultrasound.

In 1977, Crabtree & Forshaw [4] reported that the noise from ultrasonic cleaners caused nausea,
headaches, tinnitus and fatigue in Services personnel at CFB North Bay and CFB Trenton. One-
third octave sound pressure levels around 20 kHz were 105 dB re 20 µPa at the position of the
operator, ‘well under 140 dB (the level below which damage to the human ear is thought not
to occur)’ to quote the authors, noting that their 140 dB criterion (re 20 µPa) was based on the
1966 guideline of Parrack [14] which he replaced 8 years prior to the above quote by Crabtree &
Forshaw (§2b(iii)) [4]; they recommended enclosing the units or, failing that, the use of hearing
protection. They also noted that ‘One of the authors (RBC) himself experienced extraordinary
fatigue and an “unnatural sensation” in his ears after a two-hour exposure (without hearing
protection) in the ultrasonic room at CFB Trenton’. Crawford [109] noted loss of equilibrium,
unusual fatigue, nausea and headaches that persisted after insonification ceased. Acton & Carson
[1] noted that cleaning baths producing 95 dB re 20 µPa at 20 kHz and 115 dB re 20 µPa at
40 kHz, resulted in worker complaints of fatigue, buzzing noises and painful whistles, nausea
and headache, persisting for some hours after the end of exposure. The effects disappeared when
the tanks were in an enclosure. In the presence of ultrasonic drills operating at 20 kHz, Acton &
Carson [1] both noted that ‘No complaints were volunteered by the operators of the drills, who
were all men, but the authors themselves experienced a persistent ringing in the head and an
unpleasant sensation of “fullness” of the ears from the noise which was clearly audible yet not
very loud, but they were not exposed for sufficiently long periods for the other symptoms to
become manifest’. In 1983, Acton [3] confirmed sensations of fullness and pressure in the ears
and added tinnitus to the list for workers exposed to ultrasound. Herman & Powell [5] provide
interesting anecdotes from their survey of VHF/US devices, adding to the preceding list the
irritation of a researcher by audible emissions from a device mounted above an escalator, and
unconfirmed irregular heart beat when in the vicinity of another device (both devices being
intrusion alarms, which are discussed in §3b(iii)(1)).

Skillern [2] investigated noise levels in the vicinity of ultrasonic devices for cleaning, welding
and drilling. He gave one of the earliest descriptions of pain in the ear, commenting on the
narrowband nature of the source, though contamination of this by energy at other frequencies
could clearly be an issue: ‘Certainly the drill gave the author the most interesting subjective
response, and it was the only instrument that was operated for a long period of time, viz., longer
than one hour with the operator remaining close. The same subjective pain was experienced
by the operator with the operation of the drill. This pain was similar to a burning sensation in
the auditory canal. The sound emitted from the drill was evidently a very narrow band as pain
was experienced more rapidly than while measuring other devices with sound pressure levels of
greater intensity’.

It is no easy thing to distinguish between the effects of the ultrasound, and that of
the associated audio frequency sound that accompanies the operation of the equipment [1],
and a number of agencies [23,33,50] attribute all the adverse effects to this audio frequency
energy, and others appear strongly influenced by this consideration [20]. Given that the public
exposure of figures 1 and 2 lack unusual audio frequency energy, it is important to explore
this assumption. Maccà et al. [110] compared 24 industrial ultrasound-exposed subjects (a
comparatively small sample), 113 industrial noise-exposed subjects and 148 non-exposed subjects,
using both conventional-frequency (0.125–8 kHz) and high-frequency (9–18 kHz) audiometry.
They describe the Unintended ultrasonic exposure as follows: ‘The [ultrasound-exposed] group
comprised 14 subjects recruited in a spectacle frames factory where there were four welding
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Figure 7. Plots of the occurrence of a range of subjective symptoms from the 2015 data of Maccà et al. [110]. There are no data
for the inducement of ‘Tingling in limbs’ by industrial audio frequency noise. Note that there are typographical errors in the
original tables as explained in appendix C.

machines (three Branson welders, operating frequency 30 kHz, and one Schoeller, operating
frequency 25 kHz); subjects worked continuously at a distance of 30–40 cm from the machines
and non-continuously in front of the cleaning tanks. The other 10 subjects were employed in a
textile factory; subjects worked at a distance of 30–40 cm from all the machines. They all had ear
protectors, but used them minimally; the shift was 6 h and 30 min in a day. The intensity levels
measured near the ears of subjects exceeded the TLV-C (threshold limit value-ceiling) proposed
by ACGIH in all sample cutters and label-trimmers at nominal frequencies of 20, 31.5 and 40 kHz,
and in two of the cleaning tanks at frequencies of 20 and 25 kHz. All ultrasound emissions were
accompanied by subharmonics produced in the audible high-frequency range as by-products of
industrial ultrasonic processes’.

Maccà et al. [110] found correlations that indicated adverse effects on hearing from those who
had worked with ultrasonic devices, in agreement with earlier studies [111–113], but hoped
to separate out the effect of the audio frequency noise that accompanies most occupational
exposures to industrial ultrasound of the type described above. Their findings are plotted
in figure 7. Recalculation of the χ2-test results for their data in appendix C agrees with the
conclusions of Maccà et al. that the cohort exposed to audio frequency noise showed statically
significant increases in problems with tinnitus and hypoacusia (partial loss of hearing). In
addition to these differences between cohorts, Maccà et al. conclude from the raw data on
individuals (not presented in their paper) that ‘Significant correlations were also shown between
the group of workers [who were] exposed [to audio frequency noise] to tinnitus, sensation of
fullness in the ears and hearing loss >25 dB at 4 kHz’. However, there is slight disagreement
between the χ2-test result of appendix C for the ultrasound-exposed group, both agreeing that
it exhibit statistically significant increases in asthenia (loss or lack of bodily strength) and vertigo,
but only appendix C finding (from the data tabulated by Maccà et al.) a statistically significant
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increase in ‘tingling in the limbs’ for the ultrasound-exposed group. Maccà et al. state that
‘Asthenia mainly occurred once a week and vertigo about once a month, both at the end of the
workshift or during it. Histories also showed that the symptoms persisted for a few days after
exposure had ceased and no longer occurred in the absence of exposure’.

Grezsik & Pluta [114] measured 106 operators of ultrasonic devices and concluded that noise
levels in the third-octave bands centred on 10, 12.5 and 16 kHz that were well below several of
the guidelines in figure 3 (80 dB re 20 µPa) produced hearing loss in the 10–16 kHz range (which
would not be detected by normal audiometric testing that goes up to 8 kHz) measurable in people
who had experienced long exposures (8 h a day for up to 15 years).

These conclusions were drawn by looking at averages of the cohort [114], whereas in a
companion paper [115]. Grezsik & Pluta returned to the factory they examined in 1983 [111] and
tested again the 26 workers out of the original 55 who were still employed by the factory, using
the same methods they employed in 1983. This enabled them to compare the effect of 3 years of
additional industrial exposure on individuals, and they detected an additional hearing loss (over
and above ageing) of 1 dB per year in the range 14–17 kHz for workers with prolonged exposure.
They found that the number of ears that responded to the highest frequencies fell by 10% per kHz
per year in the range 13–19 kHz and concluded that the higher the frequency to which an ear
was sensitive, the greater its susceptibility to high frequency noise. This retesting of individuals
is significant because the authors paid particular attention to the quality of the delivery of sound
above 8 kHz when testing, there being no standard method of doing this, making it difficult to
extrapolate from measurements and compare between studies.

In dental ultrasonics, a single source may be exposing a range of people and the relevant
guidelines would vary between workers, patients, pupils, visitors, inmates etc. To take the case
of a dental ultrasonic tool, the patient can receive ultrasound through both airborne and bone
conduction routes, while the dental practitioners (for whom occupational guidelines should
apply) receive longer and repeated exposures through the airborne route only. By 1976, Moller
et al. [116] had observed tinnitus and/or TTS in half of the 20 patients they subjected to 5
min of dental scaling, other studies finding no such effects [117]. Coles & Hoare [118] had
found tinnitus and numbness of the ears (though not at significant levels compared with the
normal population [118]), and Rahko et al. [119] found no significant difference in hearing
ability between dental personnel and controls. Even guidelines with dedicated sections on dental
ultrasonics [19] had a very thin research base on which to comment, with too few studies, and
too few subjects, to assess reproducibility. The subject continues to produce anecdotal stories
from patients and operators [120,121]. The review by Trenter & Walmsley [122] has been recently
reproduced [123].

While older technologies produced considerable audio frequency energy alongside the
ultrasound, making identification of the source of adverse reactions difficult, newer technologies
may well produce ultrasound without audio frequency emissions. One example is the use of
ultrasound to charge electronic devices wirelessly. While the author has no specific knowledge of
the safety or otherwise of this technology because the manufacturers are not currently revealing
the frequencies or intensities used, it does the manufacturer no favours not to report the output
characteristic of the device, but instead to inform us that ‘the power levels beamed are more than
50 times lower than the lowest ultrasound imaging exposure limits set by the FDA for medical
imaging, making the system inherently safe and within all existing regulatory constraints’ [9].
The FDA limits for medical imaging are set to avoid heating and cavitation in utero for ultrasonic
transmission via tissue, not via an air path, and relate to the ultrasonic signals of 1 MHz or
higher (§4b). The health risk under consideration in this paper is via different mechanisms and a
different propagation path. The manufacturer refers to a published paper [124] that uses 1 MHz
and includes no air in the transmission path, allowing charging at a few tens of millimetres. While
the frequencies and intensities used in that study [124] would have negligible health risk through
an airborne transmission path to the human, to achieve the manufacturer’s goal (‘a world where
you could simply lift your phone in the air to charge it without needing to plug it in, no less
be next to a power outlet’ [9]) one would need to overcome the problems of reflection losses at
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the air/device interface, and absorption losses which restrict the range of the ultrasound in air.
A practical device might need to increase the power (though the manufacturers state they will
decrease power [9]) and decrease the frequency (to allow the airborne ultrasound to propagate to
greater ranges): indications of this intention occurs in the manufacturer’s statement that ‘uBeam’s
frequency is too high for dogs and most mammals’ [9], suggesting that it might fall into the
remit of this paper, because no mammal can hear 1 MHz through air (note again application
of the common yet unproved assumption that if airborne ultrasound cannot be heard, then it
can do no harm). There are therefore too few specifics published currently to assess the safety of
this technology.

Although a current survey of modern devices is needed to update and/or correct this list,
and quantify the likely exposures, a 1981 FDA report [5] listed ultrasonic sources including TV
remote controls, humidifiers/vapourizers and devices to assist the visually impaired. It also listed
intrusion alarms and automatic door openers, examples where infrared technology now provides
adequate alternatives (the measurements of which figures 1 and 2 are a subset have confirmed
ultrasound from such devices in public places, at lower levels than found in figures 1 and 2). The
modern world has numerous sources of ultrasound not common in 1981 (e.g. vehicle parking
and collision avoidance sensors), and in some circumstances it is difficult to identify the source.
For example, the full set of data of which figures 1 and 2 are a subset, includes measurements
detecting low level ultrasound in some libraries and schools, but it has been difficult to determine
whether lighting, data projectors, smart screen multimedia projectors, or some other system is
producing it, and without controlled testing where the subject is in ignorance of the exposure
conditions, it is not possible to confirm the discomfort they attribute to such low levels of
ultrasound. We need to know what the sources are in the modern world, the levels of exposure
and compare these to appropriate guidelines.

In the author’s opinion, the most common source of high-intensity airborne ultrasound
in public places, even more so than pest deterrents, is one which has not been identified
previously, specifically the public address systems that are found in sports facilities, cinemas,
workplaces, public transport etc. Many PAVA systems in shopping centres, airports, public
buildings, department stores and most UK stadia are monitored using 20 kHz tones. These tones
report to an ‘end of line’ device on each loudspeaker circuit which ‘acknowledge’ receipt of the
signal, which is then returned to the amplifier and repeated continuously across the hundreds
of circuits throughout the stadium/building/space. Manufacturers require some method of
monitoring because EU legislation [125] makes supervision of evacuation systems mandatory,
which is laudable. From the various alternative monitoring techniques available, one of the
selection criteria should be compliance with safety guidelines, and our current knowledge does
not make the guidelines of figure 3 applicable for assessing long-duration exposure by VHF/US
tones in PAVA systems, particularly as one device might exposure workers, visitors with differing
ages and medical histories (even possibly confined people such as patients and prisoners), for
very different durations and intensities during a day. Moreover, PAVA exposures resemble tones
(continuous or pulsed), and as the dotted lines in figures 1 and 2 show, a broadband level 36.6 dB
lower than a tonal peak scores an identical SPL as does that peak if the limit is based only on
third-octave band levels. The author considers PAVA systems to be the most likely source of all
the signals in figures 1 and 2.

(iii) Deliberate ultrasonic exposure

Category 3 systems range from automated door openers (the author and his team have measured
ultrasonic signals from such devices) to ultrasonic weapons, as marketed to joggers against dogs.

(1) Pest repellents

Ultrasonic pest repellers can be mounted inside or on roofspaces, on building exteriors, in gardens
and public spaces. They are designed as deterrents for a range of species including dog, cat, fox,
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bird (especially pigeon), rodent (especially squirrel, mouse, rat). Whether they deter animals by
generating an unattractive environment, or by other adverse effects, is not known [126]. This
raises the question of their use near protected species (e.g. bats), pets, working animals and the
wider ecosystem (e.g. fauna that are currently thought not to response to ultrasound directly—
such as pollinating bees [127]—could be indirectly affected by ultrasonically mediated effects
upon their predators or food source). Although some researchers have induced extreme adverse
effects, from seizure-like responses in rodents [128] and cats [129] (with anecdotal reports for birds
[130]) to mutilation [48,74] and death [72], they appear to have used levels far in excess of those
used in commercial ultrasonic deterrents.

Although walls would afford a measure of protection to residents from ultrasonic pest
repellents outside of the home, some repellents are marketed for use in the home. Furthermore,
Herman & Powell [5] observed significant person-to-person variations in reactions to a dog
repeller that vary from ‘no perception or no symptoms at all, to expressions of severe discomfort
40 feet from the source, in another room’ [5].

Marketing these devices is a major business, and there are numerous claims of both efficacy
and inefficacy, and have been from the outset [85,131–134]. In possibly the first scientific study
of the effectiveness of ultrasound as a pest repellent, Frings [48] noted that there were numerous
claims without any evidence, even following an open challenge he had issued to a national pest
control convention in the 1940s to provide such data. In 1982, Shumake et al. [135] noted a range
of effectiveness depending on frequency, intensity, and the environment and history of the rat
population tested (e.g. prior exposure etc.). In 1990, Smith [136] called for Trading Standards
policing following trials showing no effect on deterring birds when ultrasonic devices were
placed within a building; and in 2001, a warning was issued by the Federal Trade Commission’s
Division of Enforcement on the effectiveness of ultrasonic rodent and insect repellents [137]. Their
continued use, however, suggests certainly a perceived benefit.

The possibility of humans and pets being affected has been recognized for decades, again with
numerous claims and counterclaims [138,139]. As noted in §3a, some manufacturers publicly
note the problem. In 2001, Cope [140] surveyed the nuisance caused by several commercial
units but, because his microphones were calibrated for the audio frequency range only, he
restricted his study only to the inadvertent generation of VHF acoustic signals from devices
that purport to generate ultrasonic signals. He found that none of the devices matched the
manufacturer’s specifications on dynamic range or operating frequency. He measured VHF sound
signals between 18 and 19 kHz (i.e. within the third-octave band centred at 20 kHz—figure 3),
with SPLs up to 109 dB re 20 µPa at a range of 1 m from the source, increasing as one approached
the source. This indicated little improvement in quality control since 1984, when Gold et al. [141]
warned that pest control devices did not match manufacturer claims for frequency, output or
effectiveness.

News outlets and web forums have featured reports of adverse reactions by individuals to pest
deterrents and warnings re their proximity to children and pets [142–146] although these have
not been subjected to rigorous scientific testing, which would involve human experimentation.
Recently, however, Ueda et al. [147,148] rigorously measured the ultrasonic fields in a Tokyo
restaurant from pest scarers around 20 kHz (with strong harmonics) reaching 120 dB re 20 µPa
directly under the source, and 90 dB re 20 µPa some 15 m from it. Young workers could hear the
output better than older ones. A survey was made of 35volunteers (including 29 college students,
12 of whom were female). The survey responses indicated that the sound could be heard by
31 of the 35 volunteers (of which four could hear it clearly). Discomfort, restlessness and ‘pain
in the ear’ were common, while nausea and dizziness were less common. Some responded so
strongly as to add that ‘my head may split’ and ‘I will never come here again because of the pain
in the ear’. Relocating the sources provided mitigation for adults although there were no data
for children.

Recently, the Federal Public Service in Belgium for Health, Food Chain Safety and
Environment issued advice regarding the potential nuisance caused to humans by ultrasonic
pest repellers [149], having commissioned a two-part study, firstly measuring the outputs of
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several devices [150] (building on an earlier study [151]), and secondly to monitor the reactions of
human subjects [152]. The first study [150] showed that simple calculations to estimate the levels
6.5 m from the source, having measured the levels 1 m from the source, tended to significantly
underestimate the actual field measured at 6.5 m. The second study [152] tested exposed two
groups with normal hearing (25 adults with ages from 18 to 25 years, and 25 adults with ages
from 46 to 58 years) to SPLs of 44.6–71 dB (depending on the nominal frequency setting: 12.5, 25 or
35 kHz) at a range of 6.5 m from the devices. After 20 min exposures, there was no detectable effect
on hearing thresholds, and one of the subjects reported nausea, headache, dizziness, pressure in
the ears, pain in the eyes, tinnitus, tiredness, or feelings of tenseness, warmth, unease or fright.
However, those subjects that could perceive them found them to be disturbing. The authors state
that ‘Some settings of the ultrasonic repellent were not investigated in this study. One of the
reasons was that [in a pilot test] their respective emissions were considered so loud and annoying
that it was agreed that prolonged continuous exposure would not be possible’.

Given their wide usage, increasingly in domestic gardens frequented by children and pets, an
up-to-date assessment of current requirements, device effectiveness and the alternative methods
available [136] would be useful.

(2) Entertainment and communication

There are many possible reasons why VHF/US signals might be included in entertainment
and communication systems as technology develops, in order to affect the acoustic field or its
perception. However, it has not been possible to ascertain actual current usage or amplitudes.
Subcarrier frequencies in radio and telephone communications offer data opportunities, but it is
not known whether they use VHF/US.

There is debate in the hi-fi entertainment industry as to the value of including the capacity to
generate sounds above 20 kHz into the more expensive sound reproduction systems. While many
markets for high value products have a history of being able to charge a premium for high-tech
but ultimately borderline enhancements, many argue that discerning users appreciate inclusion
of an ultrasonic capacity results in hi-fi [153]. Certainly, the compact disc format provides no
such capacity. The ability to hear an ultrasonic tone is, of course, very different from an ability to
appreciate the difference made by that perception of broader range of frequencies present when
such a pulse starts.

The use of ultrasound to provide the sensation of touch through acoustic streaming and
radiation forces (§4b) may become commercialized in the near future.

(3) Acoustic spotlights

Audiosonic spotlights’ [154,155] use intense ultrasound to generate zones into which audio
frequency sound is contained, so that exhibition booths, museums etc. can have audio
commentary contained in front of the exhibit without leaking to neighbouring ones. To do this
with audio frequency, sources would require large loudspeakers or arrays, much larger than
a wavelength (just as it does the receiver in figure 5). However, a transducer of modest size
can generate a tight beam of ultrasound because of its smaller wavelength. If two beams are
generated, and they are intense enough to generate nonlinearities, then an audio frequency signal
can be generated. Because the generation of the difference frequency is a second-order process
(as represented by the ‘s2’ term in the following simple power series expansion), the power of the
primary ultrasonic frequencies needs to be very great in order to generate a loud signal at audio
frequencies:

R = s0 + s1P + s2P2 + s3P3 + · · · . (3.1)

If the driving sound field P = cos 2π fat + cos 2π fbt consists of two ultrasonic frequencies, fa and
fb, then when the second-order nonlinearity is significant, it generates a propagating wave with
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energies at other frequencies including the difference frequency, (fa − fb):

P2 = (cos 2π fat + cos 2π fbt)2

= (cos 2π fat)2 + (cos 2π fbt)2 + 2 cos 2π fat cos 2π fbt

= (cos 2π fat)2 + (cos 2π fbt)2 + cos 2π (fa + fb)t + cos 2π (fa − fb)t,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

the final term indicating that energy will propagate at the difference frequency. It should be
stressed that this is different to the phenomenon of beats, which requires no nonlinearity but
which is simply a linear phenomenon resulting from superposition of signals at a receiver, and
generates no energy at the difference frequency. If the two frequencies, fa and fb, are 30 and 31 kHz,
the second-order nonlinearity will generate a signal at 1 kHz (plus a sum signal at 61 kHz, and
second harmonics of the double the frequencies of the original signals at 60 and 62 kHz).

The advantage of generating low frequencies in this way is that, for a given size of acoustic
source, it is easier to produce a beam of sound the higher the frequency used. Therefore, the two
fa and fb signals can be generated over a zone that is far more confined than the (fa − fb) could
ever be if it were generated by a source of the same size, but in the overlap zone between the
two high frequency beams, a narrow zone containing the low frequency (fa − fb) is generated: an
‘acoustic spotlight’. If the frequency of fb varies over time, then (fa − fb) follows it to produce a
time-varying audio waveform.

The phenomenon originated many decades ago for submarine sonar, but only in recent
decades has the technology become sufficiently affordable for the mass market. The point here
is that the second-order nonlinearity is weak, because s2 is small: to produce significant sound
levels at the difference frequency, the amplitude of the ‘primary’ ultrasonic signals, fa and fb,
within the acoustic spotlight must be very high.

(4) Ultrasonic weapons

Just because acoustic weaponry is intended to produce adverse effects in its victims, it cannot be
free of regulation: Even if one accepts the argument for its deployment in certain circumstances,
the effects it produces must be proportionate, with due consideration taken of the potential for
exposure of the target, unintended targets and the user, and for its misuse. As a result, it falls
within the remit of this paper.

In the use of acoustic weaponry, a method is required to ensure that the attacker is not
disturbed, but the victim is. This occasionally occurs through providing hearing protection for
the attacker, or a safe stand-off distance through the use of a remotely- or automatically-activated
ultrasonic source [156]. However, if the attacker is operating (and hence closer to) the weapon,
then usually the acoustic field is at a high frequency to which the victim (but not the attacker) is
sensitive; or the field is confined to a location occupied by the victim but not the attacker; or both
methods are used.

At audio frequencies, confinement has received most attention, with recent success despite a
poor initial record [157]. There has been considerable publicity given to non-lethal sonic weapons
for crowd control, marine vessel protection etc. such as the commercial LRAD (long range acoustic
devices) systems. Reputedly designed to deliver warning messages at 1 km range, they are
advertised as being capable of producing audio frequency signals of 120 dB re 20 µPa at 60 m and
130 dB re 20 µPa at 4 m [158,159]. At such levels, in addition to psychological reactions, hearing
damage is a risk (depending on the level and duration of exposure), and there have also been
reports of migraine, vomiting and loss of equilibrium [160]. Handheld prototypes have been
reported generating pulses of sound of 1 s duration at 125–150 dB re 20 µPa, with ‘the capacity
to knock people off their feet’ [159], but any proved effectiveness might well rely on auditory
effects rather than radiation forces, which would be too weak (§4b).

The sensitivity of the ear makes auditory routes to adverse effects more accessible than other
routes. Given that combatants, pirates and hostage takers will learn to use hearing protection, the
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market would appear to be primarily for less prepared targets, such as occur in crowd control, at
least with the current cumbersome vehicle-mounted devices.

Although some have confused the ability of LRAD devices to project ‘beams’ of intense
sound with the ability of parametric sonar to generate such beams, the LRAD does not use the
technology of the preceding subsection. LRAD has the expected directionality of a large sound
source operating at, typically, 2.5 kHz, as discussed in §3b. Although there are repeated calls
to use the parametric sonar technology described in the preceding section to produce beams of
audible sound for non-lethal weaponry [71,161–164], such calls do not take into account the fact
that, although the intensities at the primary frequencies fa and fb are necessarily large to produce
nonlinear effects, the audio frequency signal at fa − fb is weak because it is produced by a second-
order nonlinearity, and extremely strong primary beams would be needed to produce anything
other than a comparatively weak audio frequency signal.

Although an LRAD source was aimed at protestors in New York at the 2004 Republican
National Convention, the uncertainty at the effect on people at very short ranges meant it was
not activated [165]. LRADs were probably not used on the public until 2009, in Pittsburgh at
the G20 Summit. LRAD devices operate at frequencies of a few kHz, and so are outside the
main topic of this article. Ultrasonic weapons are distinctly different: using higher frequencies,
a tight beam can be produced from a smaller (e.g. handheld) device, although scattering and
attenuation are usually more of an issue at these higher frequencies. Barring subharmonics or the
ability of the victim to hear above the upper limit expected by the manufacturer (figure 4), the
ultrasonic weapon would not be expected to give to humans the audible cues and discomfort of
an LRAD, although if the intended target is some non-human pest, it may claim to operate in such
a way. In either scenario, the ultrasonic weapon is perceived to offer the advance of presenting
a deterrent without risk of hearing loss to humans. This assumption must be critically assessed
against research (or its lack) on: the potential for ultrasound to cause audio frequency hearing loss;
the occurrence of non-auditory adverse reactions; and the ability to generate immediate adverse
reactions in the general population as opposed to sensitive individuals.

There are numerous adverts available for ultrasonic weapons, though the author has found
no convincing evidence of efficacy. In the marketplace, ultrasonic weapons claiming to induce
non-auditory effects face the challenge of competing with devices like LRAD, which do exploit
the extreme sensitivity of the human ear to acoustics, and appear to compete on price. Of many
such products, the ‘Phasor Pain Field Pistol 135 dB’ is advertised as producing 10–25 kHz at 130–
135 dB re 20 µPa (‘130 dB at 18 inches’ [166]), and is ‘intended for animal control, routing out
rodents, predators from bird feeders, control of unruly dogs, cats, even people! ... May be set to
an inaudible but intolerable feeling of pain or discomfort’ [166] because ‘Exposure to people will
cause severe discomfort, pain nausea, paranoia and disorientation’ [166]. The larger ‘Phasor Pain
Field Generator with remote control 140 dB’ operates in the same frequency range and claims
to produce 140 dB re 20 µPa at arrange of 30 cm. This device is advertised for ‘for potential
crowd control applications . . . Excellent for keeping out two and four legged pests from gardens,
unauthorized areas . . . Also excellent deterrent to intruders when used in the home’ [156]. The
statement by the manufacturer on the safety of the device is recommended reading, contained in
appendix D.

It is clearly possible to generate sound fields intense enough to cause both auditory and non-
auditory adverse effects, in both the 10–20 kHz and the less-researched 20–25 kHz ranges that
these two devices, and many similar ones, claim to cover, though as to the specific amplitudes
claimed for these devices, this study has not had access in order to verify the accuracy of these
claims in a manner traceable back to primary standards. Let us assume as a working hypothesis
that there exists, in the classified literature, similar dearth of evidence found in the open literature
(and which has led to the uncertainties outlined in this article as to effects and mechanisms;
sections 2b(i,iv), 3.2 and 4). If so, despite the persistence of advertisements for ultrasonic weapons,
the most reliable option to make a VHF/US weapon work is by deterring victims using acoustic
fields that are audible to them, but not to the user of the device. This is of course the protocol
for the familiar pest deterrents, and the less common devices resembling the ‘blast wave pistol’
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mentioned above for deterring non-humans with VHF/US auditory sensitivity. It would be
extremely disturbing if this protocol were to be used to target specific demographics of the human
population, such as women or children or other groups who do not experience high frequency
hearing loss (either through genetic or environmental reasons [167]) to the same extent as other
demographic groups. As a species we have already commercialized such devices, as will now be
discussed.

(5) Mosquito

There now exist devices that exploit the fact that the sensitivity of the ear to high frequencies is
personal, and often age-related. The purpose of these devices is to target specific demographic
groups, for example, by using high frequencies below 20 kHz to prevent teenagers loitering
around shops. In 2006, The Telegraph reported that ‘Police have given their backing to a gadget
that sends out an ultra-high-pitched noise that can be heard only by those under 20 and is so
distressing it forces them to clutch their ears in discomfort’ [168]. The device operates on the
principle that people more than, say, 25 years old will have lost sensitivity to these irritating VHF
acoustic signals. Variations on this, for example producing low frequency sensations using two
ultrasonic fields of slightly different frequency, have also been proposed [169].

Routine hearing threshold measurement is normally restricted to frequencies below 8 kHz.
Although the loss of high-frequency sensitivity with advancing age is well established, the
trends with age and gender in the 15–20 kHz range used by Mosquito devices are less frequently
researched [170].

The installation and use of such ‘Mosquito’ devices continues to be unregulated. Individual
householders and owners of business premises can install the devices. These devices do not emit
ultrasound but emit intense sounds at around 15–18 kHz (the later versions tending to 17–18 kHz).
This is done with the specific intention of creating a distress response in young people and thereby
discourage them from ‘loitering’ in the vicinity of the device, neglecting:

— the effect on very young children and animals brought close the device by parents or
grandparents who are not aware of the signal;

— the effect on children with pre-existing conditions that make them especially sensitive
(autistic spectrum disorder, hyperacusis, Williams syndrome etc.);

— the health effects on children who cannot avoid long-term exposure (e.g. because of their
residence, the daily route to school);

— the lack of research to understand the potential effects of VHF/US signals on individuals
who cannot hear them; and

— the lack of research on the auditory and possible non-auditory effects of such exposures.

In 2008, the Association of Chief Police Officers declined to award its ‘Secured by Design’
accreditation to Mosquito, their press release stating ‘Secured by Design is the only official
form of national Police approval and we must be satisfied that products are safe and meet
performance standards before offering them Police endorsement. We have refused to accredit
Mosquito primarily due to lack of evidence that it is safe. Following credible, external scrutiny of
the product it could not be confirmed that noise it emits is only audible to young people and the
potential effects of the product on people suffering disabilities was inadequately researched and
uncertain. In addition, there were issues surrounding the appropriateness of utilising this kind
of device given that it’s discriminatory against a particular group . . . ACPO Crime Prevention
Initiatives has taken the stance that the product is not yet and may never be ready to receive
official Police endorsement however the decision as to whether or not to use Mosquito is a matter
for individual for individual Forces’ [171]. Sections of the media reported dissatisfaction with the
decision from manufacturers and shopkeepers [172].

In Congleton in 2015, the local government unanimously voted to refuse permission to install
Mosquito devices following instances including a parent reporting that a Mosquito device caused
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a child to fall from a bicycle as he removed his hands from the handlebars to cover his ears
[173]. They supported enhanced educational routes to improving teenager behaviour. While
it touches beyond the remit of this article, such a social response to an acoustical technology
that was designed to reduce a social problem, does introduce symmetry in addressing the fact
that the Mosquito should not be a substitute for investment to provide appropriate safe places
(e.g. youth clubs) for children to meet, as the device can potentially displace children to more
hazardous areas.

The Mosquito produces a discriminatory adverse effect. Its use should not be conflated with
the use of a ultrasonic ring tone, intended to be covert with respect to the older generation [174],
presumably using a signal and an amplitude that does not distress youths using it.

Section 3.2 has shown examples of VHF/US devices that are marketed to cause distress
(§3b(iii)(4,5)), while other airborne VHF/US technologies are marketed as safe (§3b(ii);
appendix D). Statements from manufacturers include insufficient detail and contain assurances
of safety that are not supported by relevant evidence. Coming atop this paper’s evidence of
public exposure by commercial devices that are not explicitly advertised as producing ultrasound,
and the difficulties in measuring device outputs and fields, it is important that there are
appropriate guidelines backed by rigorous research, and calibrated measurements backed by
appropriate equipment and standardized procedures, so that safety can be properly assessed for
the populations and demographics that will be exposed.

4. Is there a feasible mechanism for the reported adverse subjective effects of
ultrasound?

The range of subjective symptoms reported by the public (migraine, nausea, tinnitus, headaches,
fatigue, dizziness, feelings of ‘pressure’) are so common and so non-specific that most clinicians
are unlikely to attribute them to a physical cause. As regards viewing the proposal that airborne
ultrasound is the cause, difficulties include the fact that: the lack of evidence means that adverse
effects from airborne ultrasound are not included in any of the relevant NICE publications that
support differential diagnoses; the sources of ultrasound are difficult to identify and locate or
even confirm as existing at all; the VHF/US fields have been difficult to measure in a manner
traceable to international standards; reports are primarily anecdotal and vary from describing
instantaneous responses to a 30-min delay before the onset of adverse effects and include reports
of persistence of headaches etc. for hours after exposure has ceased; especially, in the case of
occupational exposure, some VHF/US studies would have included significant audio frequency
energy [1].

Although reports of subjective effects from airborne VHF/US date back over 40 years, they
are complicated by inadequate progression along the evidence hierarchy, the disproving of the
original ultrasonic sickness claims, and the frequent presence of high levels of audio frequency
sound accompanying the ultrasonic exposures, as reported in this paper. This has left holes in the
evidence base. One further question is whether subjective effects might occur only in those who
can hear the sound, or whether they can also occur in others. The case for asking whether there
is a conceivable mechanism by which subjective effects can occur in those who cannot hear the
sound is based on:

— the need to assess the anecdotal stories from those who purport to have suffered in
this way; and

— the need properly to frame the assumption that adverse effects only occur when airborne
VHF/US is heard, which has, and will in future, direct assessments of who is susceptible,
and what safety guidelines are required.

If an unpleasant intense signal is heard, whether it be VHF/US or some audio frequency noise
that accompanies the ultrasound (such as the hiss of cavitation in a cleaning bath, the noise of
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an ultrasonic drill etc.) then a combination of anxiety, stress and our knowledge of the human
response to audio frequency noise can offer a plausible explanation for the symptoms (which
nevertheless needs testing). If, however, nothing is heard, is there a mechanism for generating
adverse subjective effects?

The lack of a mechanism for generating these subjective effects has underpinned many
assumptions. Howard et al. [34] worked on the assumption that subjective effects from exposure
to ultrasound were caused by the accompanying levels of audio-frequency sound that the sources
of ultrasound generated, such generation being either accidental (e.g. through the unwanted
placement of energy at subharmonic frequencies) or deliberate (as when nonlinear effects are used
to produce zones of audio frequency signal, the advent of such devices being the specific prompt
for the review of guidelines by Howard et al. [34]). In 1984, the INIRC-IRPA [20] stated that ‘Effects
on the general public of airborne acoustic energy appear to be mediated by nervous reaction.
Many people are unable to enter commercial establishments having an intrusion alarm (where
the alarm is turned off, but the airborne ultrasound is still radiating) because they immediately
suffer headaches or feel nauseated’. In the above quote the phrase ‘mediated by nervous reaction’,
ICRNIPA are probably using phraseology similar to that of Health Canada who stated ‘the so-
called “subjective” effects on the central nervous system’ such that, for example, a sufferer feels
compelled to remove themselves from the vicinity of the source of pain or disturbance.

This paper will proceed on the assumption that at least some of the complaints from the public
are indeed caused by ultrasound in air.

(a) Is the potential for adverse effects linked to hearing acuity?
We are taught, as part of formal education, definitions such as ‘Ultrasound is the name given
to sound waves that have frequencies greater than 20 000 Hz. It’s too high pitched for human
hearing, but many animals, such as dogs, cats and bats can hear ultrasound’ [175]. However,
even a small sample size can show VHF/US detectability to the levels shown in figure 1c [26].
Given that we know that there is great variation between individuals in hearing acuity and
frequency range, with a tendency for greater high frequency acuity in the younger population,
a single cut-off frequency for all is clearly too simplistic. It is timely to re-examine the source of
the current received wisdom, and to interpret it in the light of the difficulties that having such
small wavelengths introduces in making measurements that can usefully be transferred from one
piece of equipment to another.

There is a wealth of material on hearing acuity and how it varies with frequency. However,
it is important to appreciate that this legacy of knowledge was almost wholly taken with low
amplitude tests. Furthermore, the accepted trends come from averages over large numbers. As
we enter an era where it is possible that large numbers of the population are exposed to high
amplitude ultrasound without any corresponding audio-frequency cues, then the diversity in the
population, and the unnatural nature of the stimulation, mean that reliance on received wisdom
from current audiology must be scientifically tested.

As seen above [22,34,50], the common belief is that if there is to be an adverse effect, the subject
must be able to hear it, an assumption which has been used to justify the focus by the ACGIH
[23] on the levels of the subharmonics only, which forms the basis of current US regulations
for exposures above the 20 kHz third-octave band. There is a wealth of material on mechanisms
for acuity [176–182] although a great deal is based on bone conduction rather than the airborne
pathway. The issue to be addressed in §3b is whether there is a mechanism for adverse effects
without hearing acuity.

(b) Is there an alternative mechanism? Adverse effects without hearing acuity
The remarkable aspect of looking for a mechanism for adverse effects without hearing acuity
is that the intensities associated with acoustic field are almost always low compared with the
intensities we see in comparable radiations. The 140 dB re 20 µPa acoustic field cited by Crabtree &
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Forshaw ([4]—see §2b(iii) and below) corresponds to an acoustic pressure that, in a plane acoustic
wave at ground level in Earth’s atmosphere, would have an intensity of around 100 W m−2,
approximately one-tenth of the intensity of ground-level daylight on a clear day. While a dark
adjusted person might shy from such dim daylight for a short period, this is a response due to
the sensitivity of the relevant sense organ (the eye). If our sense organ is not part of the equation,
adverse effects are unlikely, as we would feel only mild heating from the absorption of such weak
daylight. However, therefore, can airborne ultrasound cause adverse effects if we cannot feel it?

It would be unwise to consider adverse effects only in terms of the physics of the wave.
Frings & Senkovits [74], on confirming their earlier work [72,73] that damage in mice from
airborne ultrasound comes from heating of the fur, stated that this finding was ‘supporting
the statement of Davis [92] that reflection from the skin can afford satisfactory protection from
heating by high intensity air-borne sounds in man’ (the context being that all these authors were
considering heating only, and Davis specifically excludes ‘sense organs’ and ‘general “sensations”
or mental states’ from the musing to which Frings and Senkovits were referring).

However, intense acoustic fields can generate nonlinearities, such that an oscillating acoustic
pressure can give rise to a steady ‘radiation pressure’, net motions in the gas or liquid through
which the wave travels (streaming, microstreaming [91]) and the generation of harmonics
(at frequencies of nf ), ultraharmonics (at frequencies of nf/m) and subharmonics (at frequencies
of f/m which can be in the audio frequency range if the frequency f of the fundamental wave
is ultrasonic, and m and n are integers greater than unity). A radiation pressure of prad = I/c
is generated by a plane wave of intensity I that is wholly absorbed after travelling through
a medium of sound speed c [91,108]. For the 140 dB re 20 µPa field mentioned above, this
equates to a radiation pressure of 0.3 Pa, a tiny steady pressure given that the human ear can
withstand immersion, where every metre further underwater adds an additional 10 000 Pa. It
would certainly be too weak to knock people off their feet ([159]; §3b(ii)(4)).

Health Canada [22] stated that ‘most plausible mechanisms for non-auditory effects of airborne
ultrasound on a human are heating and cavitation’, though neither is relevant to humans below
the levels associated with extremely intense ultrasonic field, and certainly not for the potential
human exposures of figure 1. The two mechanisms (heating and cavitation) immediately suggest
themselves because they are of such importance during diagnostic fetal scanning that the US
FDA mandated that scanners show on-screen real-time indicators reflecting the likely hazard to
the fetus associated with these mechanisms [78], but they are not relevant for current airborne
exposures (§3b(ii)).

Although experiments with ultrasound in air generated death in insects and mice in 10–180 s
as a result of 20 kHz in air at 169 dB re 20 µPa [101], and dizziness and mild-to-very-unpleasant
heating at crevices (fingers, skin clefts, nasal passages) in excess of 140 dB re 20 µPa in humans
[3,22,101], these levels are almost certainly very significantly greater than those to which the
public are being exposed. As Davis et al. [30] commented in 1949, ‘Although we can cook a small
animal with the energy of a sound field, it is probably impossible to cook a man. . . . There is no
evidence that air-borne ultrasonics can produce any specific direct effect on the brain or other
parts of the nervous system [92]. In spite of many suggestions of such mysterious possibilities,
the only reliably established effects are either through the stimulation of the ear or some other
sense organ’. From the point of view of heating and cavitation, this is a sensible proposal, but in
the absence of a mechanism for subjective effects, it needs careful testing against evidence, which
includes an assessment of whether the current evidence base is sufficiently large.

However, the ear has extraordinary properties, an analogue sensor with a dynamic range
exceeding 120 dB (6 orders of magnitude in pressure) and it is no simple matter to predict the
sensations it might generate when driven by intense ultrasound in air. Recognizing that the
data in figure 8 is drawn from only five males of 25–35 years age, having normal hearing, and
granted that at high frequencies relative positioning on the tympanum will be challenging, its
trends suggest that the response of the tympanic membrane decreases with frequency, but offers
the preliminary suggestion that the limited data suggest a drop of only around a factor of 10 in
displacement (approx. 20 dB) in going from 1 to 10 kHz [183]. It is difficult to extrapolate what
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Figure 8. The displacement of the tympanic membrane measured in vivo on five healthy males aged between 25 and 35, for
two different sound pressure levels in the ear cavity, the signals having centre frequencies in third-octave bands from 200 to
10 000 Hz. Taken from Ahn et al. [183].

would be the effect of the outer ear, especially given the small-wavelength effects seen in figure 4,
but resonances would not be unexpected. Given the 120 dB operational dynamic range of human
hearing, in the absence of measurements it is not unrealistic to hypothesize tympanic membrane
vibration when high amplitude (e.g. 140 dB re 20 µPa) signals at 20–30 kHz are incident on the
tympanum (the upper frequency limit of normal human hearing is not set by the tympanum, but
rather by the frequency characteristics of the middle ear [184] with loss of hair cell activity in the
basal region of the cochlea contributing to high frequency loss from childhood onwards [111]).
That tympanic ultrasonic vibration speculatively might occur in some individuals, is stimulated
by extrapolating to high frequencies the variation between individuals: figure 8 indicates that, at
80 dB re 20 µPa exposures, the individuals showing the greatest displacement at 10 kHz exhibit
displacements (approx. 0.01 µm for the 1 STD upper limit at 10 kHz) that are comparable with the
displacements observed in the individuals at the 1 STD lower limit experience at 1 kHz. It is not
possible to extrapolate from the less than equal to 10 kHz data on just five adult males shown in
figure 8 to discuss VHF/US exposure in the general population, but figure 8 does give perspective
on the use of averages.

The tympanic membrane contains mechanical proprioceptors that are sensitive to pressure,
tension and stretch (Nagai [185] identifying Pacinian corpuscules). The middle ear tympano-
ossicular chain contains two muscles, the tensor tympani and the stapedius muscles, which
contract to reduce the amount of motion in the presence of intense acoustic fields [186]. When
applying small air pressure changes sufficient to cause small movements of the tympanum, Job
et al. [186] used fMRI to show that proprioreceptors in the tympanic membrane responded by
generating brain activity in a limited region of Brodmann area 43 at the caudal edge of the
somatosensory cortex. This is the area involved in activities accompanying oral intake such as
gustation and swallowing. The tympanic membrane is tensed by the tensor tympani muscle, and
both it and the veli palatini muscles (which are involved in swallowing) are Eustachian tube
muscles that, it was recently proposed [187] are in histochemical continuity with a long tendon
[186], possibly forming a functional unit. Taking a step back, it is perhaps not unsurprising that
sensors in the tympanic membrane that detect pressure changes might have a neural connection
to Eustachian tube muscles because the response of opening the Eustachian tube by swallowing
mitigates pain from, for example, reduced air pressure in aircraft: indeed, Nagai [185] disrupted
the function of the Eustachian tube by anaesthetizing the tympanic membrane.
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Consider therefore the following untested hypothesis. In the presence of intense ultrasound,
the tympanic membrane still undergoes displacement (extrapolating from figure 8). Given
the diversity in the responses of the hearing and balance systems between individuals, in
some individuals the neural connections in the brain between these tympanic receptors and
the associated Eustachian tube muscles are activated. However, the brain does not receive
complementary signals from the auditory nerve that it usually receives when hearing sound,
because the inner ear is not responding to the ultrasonic stimulation: the filtering by the middle
ear and cochlea means that the brain does not associate the ultrasonic vibration of the tympanic
receptors with hearing as it would at lower frequencies. The hypothesis is that the conflicting
signals from the cochlea, and those from the receptors in the tympanum and Eustachian system,
could lead to headache, dizziness, nausea, fatigue etc. A similar disconnect in the brain between
the signals from proprioceptors and those from the inner ear (the balance organs) is the most
widely cited cause of motion sickness (vision also being important here, but not critical, because
people with severely impaired vision can still experience motion sickness; [188–190]; note that
there are competing hypotheses for the cause of motion sickness [191–193]).

This speculation ends by noting the overlap between the wide range of symptoms reported
for motion sickness and those reported for ultrasonic exposure. The terminology ‘ultrasonic
seasickness’ should not imply that a given motion sickness medication would work in relieving
adverse subjective effects from ultrasound as it depends on the mechanism and the specific effect
on the proprioceptors.

Some issues remain unresolved by this hypothesis. For example, the marketing of the
Mosquito device suggests that, at least for the lower intensities and frequencies used in that
application, subjective effects have not been reported by those who cannot hear the device, which
challenges the above mechanism.

The conclusion must be that there is a knowledge gap regarding the mechanism for the
reported subjective effects of ultrasound in air, and without a validated mechanism, measures to
protect the public and workforce become more difficult to design and to assess. Indeed, it opens
up the need critically to assess the assumptions underpinning the transposition of established
practices in the audio frequency range to the ultrasonic range, including the use of equivalent
noise pressure levels for an 8 h day, and maximum third-octave limits [107].

5. Conclusion
Any author raising the issue of a possible health hazard from ultrasound in air should understand
that this comes at reputational risk: writing in 1966, Parrack [94] wrote ‘what are the “effects
of airborne ultrasound on humans?” The question is generated by conflicting points of view
presented in some recent public utterance on this subject. Some of these statements ascribe to
air-borne ultrasound, a capacity to induce remarkably dramatic effects in humans. Apparently,
twenty years have wrought little change in our understanding of the effects on man of air-borne
ultrasound!’, eventually concluding that the reported symptoms were probably psychosomatic
(see §3b(i) for the quote). The same year he published his now infamous 140 dB re 20 µPa
guidelines [14], which he retracted 3 years later. Parrack could little imagine that the 20 years
of uncertainty to which he referred would extend to 70 years by 2015. Why therefore does this
article choose to address the same topic? In part, it is because the industry still refers to the ‘latest’
guidelines without recognizing that these are re-issues or slight adaptations of older guidelines
without addressing the fact that those guidelines were based on an inadequate research base, as
some of those older guidelines explicitly state [20]. It is also because of evidence that commercial
devices project ultrasound into air in public places at not insignificant intensities. These intensities
are almost certainly significantly less than those to which occupational workers tested in the
past were exposed, and there has been no research to test independently whether adverse effects
reported by the public are in fact caused by ultrasound. However, signals such as those shown
in figures 1 and 2 represent an opportunity, because they warrant testing the effect of tonal
ultrasonic signals alone: very many of the original studies on which the guidelines are based
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relate to exposures where the ultrasonic component is contaminated by audio frequency energy
through subharmonics, or through a physical phenomenon (jet noise, cavitation etc.) that was
produced when the ultrasonic energy was generated. In such circumstances there remains to this
day uncertainty (and for most authors, significant doubts) whether the ultrasound, rather than the
accompanying audio frequency energy, caused the adverse effect [43,107,194]. This is less likely
to be an issue with the spectra of figures 1 and 2.

Despite the fact that potential adverse effects were raised over 70 years ago, we still know very
little about human responses (both auditory and non-auditory) to ultrasound in air. Standard
hearing tests do not consider acuity above 8 kHz, and although loss in this frequency range due
to exposure at other frequencies has been established, the number of studies and cohort sizes
remain small. Furthermore, the questions asked in directed studies have not to date been designed
to address the mass public exposures of figures 1 and 2. The same is true in assessing the extent
to which individuals suffer the effects labelled as ‘subjective’ (nausea, headaches, tinnitus etc.),
and to what extent public exposures might stimulate these, and to what extent ultrasound might
be blamed by the public when it is not the source of adverse effects. There is a lack of confirmed
mechanism, and although a speculative one is aired in this paper, it has no supporting evidence.

The evidence suggests that VHF/US provides greater adverse effects in some individuals than
others, possibly even without the need to hear it, although this is insufficiently researched. If
this is the case, employers, parents, spouses, teachers and carers may well be unaware that the
location they find to be benign, and into which they direct those for whom they are responsible,
may induce adverse effects in more susceptible individuals. The increased susceptibility of
some minorities has been exploited to produce deterrents aimed at them on the basis of this
susceptibility, rather than on the basis of their actions. As a form of discrimination, ultrasound
in air has the peculiar characteristic that susceptible individuals may not even know that the
adverse effects are caused by ultrasound as opposed to some other source (e.g. ‘sick building
syndrome’).

The overwhelming conclusion must be that the research base is too small to support the current
guidelines because

— The issuing of new guidelines based on a review of existing guidelines has inadvertently
given rise to the misconception that there exists a consensus, the new guidelines
validating the old and vice versa, when what is missing is the fundamental research to
validate a genuinely new set of guidelines. That research must ask the correct directed
questions and test sufficient numbers of subjects in representative cohorts in order to
allow manufacturers to know that their products are safe, and to allow those who believe
they are suffering as a result of ultrasound exposure to have the true source of their
symptoms identified, whether it is ultrasonic or not;

— The application of these guidelines for occupational exposure, to circumstances of public
exposure, is inappropriate, particularly given the nature of the few research studies
on which current guidelines are based (typically small numbers of adult males having
occupational exposure);

— The use of averaging is problematic, there is a failure to consider the spread of the
population about the mean, and a failure to consider sensitive subsets of the population
(including specific demographics); and

— Most, if not all, advertised levels on commercial devices cannot have been rigorously
measured traceable to primary standards.

Because there is now mass public exposure to ultrasound in air, we require

— Appropriate guidelines for both public and occupational exposure, with appropriate
consideration of women and children and exposure in residential areas, accompanied by
an end to the practice of issuing new guidelines based on old guidelines (particularly,
the erroneous interpretation of the most populous guideline in figure 3 as indicating
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consensus, so enhancing this particular problem), and an end to using occupational
guidelines for non-occupational circumstances;

— Survey of the occurrence and properties of devices that expose the public and workers;
— Standardization of procedures for reporting levels, reporting both third-octave and peak

SPL levels where the signals are tonal, with information on the frequency content (centre
frequency for tonal signals, and existence of harmonics and subharmonics);

— Measurements following international protocols that take account of the particular
features of using ultrasonic equipment (directionality, scattering etc.), and manufacturers
should label using only measurements taken in this way, expressed with suitable
metadata and clarity as to the spectral distribution of the energy;

— Survey of adverse reaction (both impairment of normal sensations, and inability to
achieve optimal performance, e.g. in schools), taking into account the false positives, with
appropriate care for sufferers regardless of whether ultrasound is the actual source of
discomfort;

— If genuine adverse reactions are found in workplace, residential or public settings, an
assessment of whether normal measures offer sufficient protection (e.g. the fall-off of
intensity with range from source, attenuation of ultrasound by common materials and
enclosures [141]);

— Standardization of procedures and equipment for hearing tests above 8 kHz;
— Double blind testing of individuals who suggest they are sensitive;
— A critical assessment of the unchallenged use of hearing thresholds as a proxy for all

adverse effects, and as a reliable indicator as to the likelihood of the occurrence of adverse
effects;

— A requirement that researchers who report the results of testing the acuity and reaction
of humans to ultrasound in air should publish the raw data and report on the scatter
in the data, not just the trends that come from linear regressions (for example by using
electronic supplements to journal papers);

— Assessment of workplace, public and residential exposures (and their overlap e.g. in
hospitals, schools, nurseries);

— Research towards the possibility of dose–response relationships for auditory and non-
auditory effects, taking into account sensitive individuals;

— Appreciation of the implication of averaging and assessment of departures from the
average;

— Assessment of what public exposure is necessary, what can be stopped with little
inconvenience to the user, and for what devices alternatives must be found, if adverse
reactions are proved with existing exposures; and

— Political will to address these issues. There exists a knowledge partial vacuum on the
adverse effects of ultrasound in air, and legislators must make a choice on whether this
vacuum is considered to be a lack of evidence for or against the current exposure of the
public to ultrasound. After this immediate response, the evidence to allow those who
wish to use ultrasound in air, to do so safely, must be gathered.

Data accessibility. The original data in this paper (figures 1 and 2) were collected from sites that only gave
permission for recording on condition of anonymity. The original data files contain information (e.g. audio
frequency public address announcements) that would reveal the location and break the contract, and so
cannot currently be made publicly available. Each site been supplied with a report of the findings for their
site and comparison to guidelines.
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Appendix A. Instrumentation and the citizen scientist
Figure 1a shows the type of spectrogram (also known as a time-frequency plot) that can be
taken with a smart phone equipped with an appropriate app. Spectrograms show how the
spread of energy (the colour scale) across the various frequencies (the vertical axis) varies as
a function of time (the horizontal axis), and they can also show PSDs like figures 1c and 2b,d.
However, if members of the public wish to try to detect VHF/US signals in such a way, they must
appreciate that:

— the reported dB levels are unlikely to be reliable;
— like ears, even high frequency microphones have an upper frequency limit above which

they are insensitive, and their device can obtain no information on the existence or not of
signals above this (see the notes in §2a(i)); and

— some signal processing routines produce artefacts, e.g. through aliasing.

Some smartphones and tablet computers do have high frequency sensitivity sufficient to produce
images such as figure 1a, and sound level meter apps are available. Not only must your
microphone and preamplifier system be sensitive to high frequencies, but the settings on the app
must ensure that the data are acquired at sufficiently high frequency (to detect 20 kHz signals, the
sample rate must be over 40 000 Hz, preferably over 48 000 Hz). The number of samples in the Fast
Fourier Transform should be a maximum, and if there are other settings, these too should be set
to maximum. Activating the automatic gain functions can help generate good pictures but means
the reported levels must be treated with scepticism. Always take a note of those settings, the
make, model and (if possible) operating system, and details of the spectrum analyser app, and
your location (with time and GPS if possible). Interrupt your recording by placing your finger
over the microphone, after the manner shown in figure 1a, to ensure the signal is not electrical
pickup (check on the web which microphone you need to cover—many phones have two different
microphones, one for voice and one for functions like video recording, and that is the one you
need to cover).

For pulsed signals, note that if the time window over which the signal is measured
encompasses just a single pulse, as in figure 2c,d, then the intensity will be scaled by the duty
cycle in the expected manner compared with measurements over a longer period [91].

It may be that a future app could record spectra, settings, metadata and GPS data in order to
map locations or shows the change of fields over time.

In figure 1a the app is SpectrumViewPlus. Microphone sensitivity for VHF sound and
ultrasound varies significantly between iPhone� models, the iPhone 5� appearing to be most
sensitive in limited testing, but even today’s microphone and app combinations would probably
not be sensitive to signals as high as 30 kHz. Similar recordings could be made with a modern
iPad�, but the reliability of calibrations on sound level meter apps, especially in the VHF/US
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frequency range, should be treated with scepticism. It is not possible to reply on an iPhone and
the available apps to make the calibrated measurements of figures 1b, c and 2. Instead three
(for figure 1b,c) or two (for figure 2) calibrated microphone and data acquisition systems were
deployed to allow each to cross-validate the other.

This paper presents the data from one system only in each figure to save space. The data in
figure 1b were recorded using a B&K Type 4939 Microphone plus Type 2669 preamplifier, B&K
NEXUS Type 2692-C Charge Amplifier, RME Fireface UCX Sound Card into a Windows laptop
running Adobe Audition 3.0.

The data for figure 2 were recorded on a Fostex handheld recorder with a PCB 377B02
microphone and a PCB 426E01 preamplifier and a PCB 480E09 ICP� sensor signal conditioner.
The signal processing strategy adopted for figures 1b,c and 2 gives a frequency resolution of
approximately 23 Hz.

The calibration of each system was traceable back to primary standards for VHF/US at
the National Physical Laboratory (NPL) in the UK, and Danish Fundamental Metrology A/S
(DFM) in Denmark. The calibration of the microphones was checked by NPL against a reference
microphone (IEC type WS3) which had been calibrated up to 200 kHz at DFM using a primary
free-field calibration method.

Both of the microphones used to record the signals in figures 1b,c and 2 are ‘free-field’
(as opposed to ‘pressure’; [195]) microphones, designed to measure the pressure that would
have existed in the environment before the microphone itself was introduced and disturbed
that acoustic field (as the microphone body scatters and diffracts the field). In principle free-
field microphones should always be pointed at the source of interest. The compensation factors
that are used to infer this pre-existing field become more difficult to calculate as the frequency
increases, which again makes extension of standard measurement methods and equipment into
the VHF/US regime less simple than an uncritical belief in a microphone’s output might assume.
Even when all such compensations are made in the calibration conditions of an anechoic chamber,
in the field (when sometimes the location of the ultrasonic source is difficult to identify) the
uncertainties become much greater.

In closing this appendix, it is worth commenting on another correction factor that is not
appropriate for the ultrasonic regime. Commercial sound level meters usually are equipped with
third-octave band filters and the widespread use of these in assessing environmental noise might
have influenced their use in the guidelines of figure 3. However, they are probably unsuitable
for assessing the tonal exposures of figures 1 and 2, because the broadband signals shown by
the dotted horizontal line in figures 1c and 2b,d score identically to the tonal data when assessed
against third-octave levels. Such sound level meters also come equipped with a range of filters
(A, B, C weighting etc. which filter the incoming sound to reflect the response of a normal human
ear to low, medium and high intensities) but these are unsuitable to use when measuring airborne
ultrasound [5].

Appendix B. Compendium of guidelines levels for the third-octave band centred
on 20 kHz
Table 1 is a compendium of the Maximum Permissible Sound Pressure Levels that are shown
graphically in figure 3 for the third-octave bands (unless otherwise stated) centred from 8 to
50 kHz (no data outside these limits are shown although some guidelines have been suggested),
arranged in original author publication year (1966–2015). Figure 3 makes clear the 70 dB spread
at 20 kHz that relates to a factor of 10 000 000 range in intensity (and over 3000 in pressure; see the
note on dB references in §2a(i)).

These data are based on the compilations listed by Lawton [45,46], with additions. Most of
the authors specify levels to the nearest 5 dB, and the vertical axis is therefore quantified in this
way (the popular 110 dB re 20 µPa band being expanded to accommodate all the occupants). The
exceptions are the EARS Project 20 and 25 kHz values (77 and 102 dB re 20 µPa, respectively) [26],
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Table 1. Compendium of the maximum permissible sound pressure levels that are shown graphically in figure 3 for the third-
octave bands (unless otherwise stated) centred from 8 to 50 kHz (no data outside these limits are shown although some
guidelines have been suggested), arranged in original author publication year (1966–2015). All are for occupational exposure
except the one labelled ‘INRC IRPA (1984) for General public’. The listing of these figures in this table should not bemisinterpreted
as an endorsement of them as guidelines by the author.

f (kHz) 8 10 12.5 16 20 25 31.5 40 50

Parrack [14,94] — — — — 140 140 140 140 140
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grigor’eva [13] 80 85 90 90 120 for wideband exceeding 20 kHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acton [15] 75 75 75 75 110 110 110 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parrack (1969, pers. commun.) cited in WHO [19]
and Acton [6]

— 80 80 80 105 110 115 115 115

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Japan (1971) cited in WHO [19] 90 90 90 90 110 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USSR (1975) cited in WHO [19] — — 75 85 110 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acton [16,17] 75 75 75 75 75 110 110 110 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US Air Force (1976) cited in WHO [19] — — 85 85 85 85 85 85 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ILO (1977) cited in Lee [18] — — 75 85 110 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sweden (1978) cited in WHO [19] — — — — 105 110 115 115 115
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Norway (1978) cited in Damongeot and Andre [7] 120 (octave band limit)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACGIH (1979) as cited in Lee [18] — 80 80 80 105 110 115 115 115
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Canada (1980) cited in WHO [19] 80 80 80 80 80 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Australia (1981) cited in Damongeot and Andre [7] — 75 75 75 75 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USSR (1983) cited in Tanttari [21] — — 80 90 100 105 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

INRC IRPA (1984) for occupational exposure — — — — 75 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

INRC IRPA (1984) for general public — — — — 70 100 100 100 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Health Canada (1991) — — — 75 75 110 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poland (2002) Leq8h — 80 80 80 90 105 110 110 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poland (2002) Lmax — 100 100 100 110 125 130 130 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACGIH (2004) 8 h average cited in Howard et al. [34] — 88 89 92 94 — — — —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACGIH (2004) ceiling values cited in
Howard et al. [34]

105 105 105 105 140 145 145 145

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US Dept of Defence (2010) — 80 80 80 105 110 115 115 115
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EARS Project (2015) — 75 75 75 77 102 110 110 110
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and the ‘American Conference of Governmental Industrial Hygienists (2004)’ [23] for 8 h average
(building on their earlier 1989 guidelines [33]). The ACGIH (2004) [23] 8 h average specifies 88,
89, 92 and 94 dB re 20 µPa for the third-octave bands having centre frequencies of 10, 12.5, 16
and 20 kHz, perhaps an unrealistically fine distinction given that much of the acoustics industry
works to a measurement tolerance of around 3 dB.

Polish researchers [24,28] report that Poland (2002) separated out the maximum allowable SPL
(Lmax) from the 8 h third-octave limit (Leq8h) and, furthermore, reduced the allowable limits on
Leq8h by 3 dB for pregnant women and 5 dB for young people (though Poland’s allowable Lmax is
the same for all types of person). French researchers [29] have also discussed reduced levels for
pregnant women, although France has no national guidelines (see below).
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Table 2. The p-values calculated to three significant figures from the data ofMaccà et al. [110] using cohort sizes of 24 and 56 for
the numbers of ultrasound-exposed and industrial noise-exposed subjects. Entries with p-values below 0.05 are shown in bold
to show they satisfy the first criterion for significance, but they are bracketed if they fail to satisfy the second criterion of having
at least five instances of each occurrence in the observations. The number of occurrences in shown in { } after each occurrence
for which the p-value is less than 5%.

subjects exposed to

symptom ultrasound industrial noise

headache 0.0628 0.232
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asthenia 0.000131{8} 0.518
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vertigo 0.000175{6} 0.652
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tingling in limbs 0.000807 {7} —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sleep disorders 0.0625 0.115
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tinnitus 0.318 0.00366 {18}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nausea 0.592 0.476
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stomach pain 0.984 0.0876
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vomiting (0.0394) {1} 0.178
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sensation of fullness 0.667 0.153
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hypoacusia (0.0496) {3} 0.000021{14}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertain gait 0.529 0.544
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that one of the reviews [27] has erroneous values attributed to USA-Air Force (1977)
in an otherwise very useful paper. This error occurred because of an error in [27] when citing
[19], and thereby attributing the USSR (1975) values to the USAF (1976). The same paper also
contains values for Bulgaria (1979) that resemble the levels for USSR (1975) but the author could
not identify the original source and so the Bulgaria (1979) levels are not included in figure 3.
Another otherwise excellent paper [28] also has incorrect levels for the guidelines issued by
Australia (1981). That paper [28] also reports levels for France (1985) that are similar to the levels
for Australia (1981) (as cited in Damongeot & André [7]). However, France has never, as a country,
had recommended levels for either infrasound or ultrasound, but rather reports from research
institutions [7,29], some of which may have been incorrectly interpreted as national maximum
levels by the authors of reference [28]. Both papers [27,28] report levels for Sweden (1992) that
are identical to the levels reported into the above table for Sweden (1978) as cited in WHO [19],
except that they report a level of 115 dB re 20 µPa for the third-octave band centred on 25 kHz (the
author has not been able to track down the source of Sweden (1992)). Both papers [27,28] contain
values for USSR (1989) that resemble the USSR (1983) guidelines cited by Tanttari [21].

Appendix C. Statistics for figure 7
Tables 4 and 7 of Maccà et al. [110], from which the data of figure 7 are obtained, contain
typographical errors in the number of subjects in the study. Estimations of the true values
were obtained by assuming that the number of subjects (n) takes a positive integer value, then
multiplying the percentages given in the relevant table by n/100 to give a value m, the number
of people exhibiting symptom if this value of n were correct. Given that m should be an integer,
the ‘error’ (e) is defined as the difference between m and the rounded value of m. The sum of
the squared errors across all of the data provides a value s, and n was identified as the lowest
positive integer for which s is suitably small. This identified the number of ultrasound-exposed
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subjects in table 4 of Maccà et al. [110] to be 24, and the number of noise-exposed subjects to be
56. These values were confirmed by the authors of the original paper just before publication (the
24 as described for the whole cohort in §3b(ii), the 56 comprising a subset of the 113 industrial
noise-exposed subjects described in the same section, comprising 20 women and 36 men). The
p-values, as re-calculated using a χ2 test from their data for these corrected cohort sizes, are shown
in table 2.

The p-values scoring less than 0.05 are indicated in bold, but bracketed if the number of
occurrences of each observation (shown in curly brackets {} after each one) is less than 5 (thereby
failing the test of robustness). Using the data tabulated by Maccà et al., the results of table 2
agree with the χ2 findings on statistical significance presented by Maccà et al., except in that
here ‘tingling in the limbs’ for the ultrasound group is also shown to be significant.

Appendix D. Example of manufacturer statement
Statement by the manufacturer on the on safety of the Phasor Pain Field Generator: ‘We have
selected a sound pressure level and a strength that we feel is safe to use and liability-free. This
means you can use it feeling comfortable it will have a deterring effect on the intrusion and yet at
the same time will not cause injury to the intruder where you could be liable. You might want to
check your local laws, as some states unfortunately favour the rights of the perpetrator far more
than the homeowner or law-abiding citizen. Even though these products will not cause injury,
they could create a situation in a highly politically correct atmosphere, so it is always good to
know your local environment. We can only warn you of this, and it has not yet happened (knock
on wood)’ [156].
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