CC-0

Melanoma cells strengthen their skeletons to resist anti-cancer therapies

Embargoed until: Publicly released:
UK researchers have figured out that melanoma cells can resist treatment thanks to the ability to boost their internal cellular skeletons, known as the cytoskeleton. When attacked by drugs or immunotherapies, the cells boost production of a couple of proteins, called ROCK and Myosin II. The researchers found high levels of these proteins help the cancer cells survive and resist the treatment. Production of these proteins, and the cytoskeleton itself, may represent promising targets for future cancer treatments, the researchers say.

Journal/conference: Cancer Cell

DOI: 10.1016/j.ccell.2019.12.003

Organisation/s: Queen Mary University of London, UK

Funder: Barts Charity, Cancer Research UK and the Harry J Lloyd Charitable Trust.

Media Release

From: Queen Mary University of London, UK

Research identifies new route for tackling drug resistance in skin cancer cells

Researchers have found that melanoma cells fight anti-cancer drugs by changing their internal skeleton (cytoskeleton) – opening up a new therapeutic route for combatting skin and other cancers that develop resistance to treatment.

The team, led by Queen Mary University of London, found that melanoma cells stop responding to both immunotherapies and drugs targeted at the tumour’s faulty genes (B-RAF or N-Ras mutations in the MAPK pathway) by increasing the activity of two cytoskeletal proteins – ROCK and Myosin II. The team found that these molecules were key for cancer cell survival and resistance to these treatments.

The molecules had previously been linked to the process of metastatic spread but not to the poor impact of current anti-melanoma therapies. This work points to a strong connection between metastasis and therapy resistance – confirming that the cytoskeleton is important in determining how aggressive a cancer is.

The findings are published in the journal Cancer Cell today.

Malignant melanoma has very poor survival rates despite being at the forefront of personalised immunotherapy. This is largely due to the development of resistance.  Around 16.000 people in the UK are diagnosed with malignant melanoma each year, with more than 2,300 deaths.

Tests in mice suggest that the therapy resistant (or non-responding) tumours are effectively addicted to ROCK-Myosin II to grow. The team discovered that blocking the ROCK-Myosin II pathway not only reduces cancer cell growth, but also attacks faulty immune cells  (macrophages and regulatory T cells) that are failing to kill the tumour. This action boosts anti-tumour immunity.

Lead author Professor Victoria Sanz-Moreno, Professor of Cancer Cell Biology at Queen Mary, said: “We were very surprised to find that the cancerous cells used the same mechanism, changing their cytoskeleton, to escape two very different types of drugs. In a nutshell if you are a cancer cell, what does not kill you makes you stronger. However, their dependence on ROCK-Myosin II is a vulnerability that combination drug therapy tests on mice suggest we can exploit in the clinic by combining existing anti-melanoma therapies with ROCK-Myosin II inhibitors.”

She said the research may have implications for cancers with similar faulty genes.

First author Jose L. Orgaz, Research Fellow at Queen Mary’s Barts Cancer Institute, said: “An important observation was finding increased Myosin II activity levels in resistant human melanomas, which suggests the potential as a biomarker of therapy failure. Resistant melanomas also had increased numbers of faulty immune cells (macrophages and regulatory T cells), which could also contribute to the lack of response.”

Fiona Miller Smith, chief executive of Barts Charity, which part-funded the research, said: “We are pleased to support the research led by the extremely talented Professor Victoria Sanz-Moreno and her passionate team who were recruited to the Barts Cancer Institute, as part of Barts Charity’s recent £10m strategic investment into cancer research at Queen Mary. Overcoming resistance to cancer therapy is an important area of research, and we are extremely proud that our investment has contributed to these important new findings which could benefit melanoma patients.”

The research was also part-funded by Cancer Research UK and the Harry J Lloyd Charitable Trust and involved researchers from the Francis Crick Institute, King’s College London and the Institute of Cancer Research.

Attachments:

  • Cell Press
    Web page
    The URL will go live after the embargo ends

News for:

International

Multimedia:

  • A drug resistant melanoma cell that has altered its cytoskeleton
    A drug resistant melanoma cell that has altered its cytoskeleton

    A drug resistant melanoma cell that has altered its cytoskeleton.

    File size: 37.9 KB

    Attribution: Queen Mary University of London, UK

    Permission category: © - Only use with this story

    Last modified: 14 Jan 2020 3:07am

    NOTE: High resolution files can only be downloaded here by registered journalists who are logged in.

Show less
Show more

Media contact details for this story are only visible to registered journalists.